
v

Acknowledgements

This dissertation would not be possible without the constant

encouragement, high standards, equanimity and constructive feedback of my

adviser, Dan Miranker. Since my very first semester as a graduate student, his

support has been constant. I look up to him as both a person and teacher, and

I can only hope that I do his mentorship justice as I move forward in my young

career as a scientist.

I also thank the students (both current and former) in Dan’s group,
namely Aibo Tian, Juan Sequeda and Lee Thompson for all their help over the

years. In particular, Juan’s work, his entrepreneurship and his ability to bring
people together has always been an inspiration. Aibo’s early investment in my
development, by allowing me to participate in his projects and always

answering my questions patiently, gave me some crucial insights into our

field, and academic publishing in general. I also thank my committee members

for being gracious and constructive. In particular, I want to thank Risto

Miikkulainen for always being there when I needed him, and Ray Mooney for

investing his time and thoughts into my dissertation and contributions. I also

wish to thank Elaine Rich, under whom I had two very satisfying semesters as

a teaching assistant.

Most importantly, without the prayers and best wishes of my family,

my journey to an advanced degree would never have commenced. My mother

is my bedrock, and her love towards me has been truly unconditional. Without

my grandfather’s faith in my abilities, I would never have had the confidence

to pursue a career in engineering or science. My sister, Divya, is my guardian

angel, a role that I consider sacred.

vi

Abstract

Resource Description Framework (RDF) is a graph-based data model

used to publish data as a Web of Linked Data. RDF is an emergent foundation

for large-scale data integration, the problem of providing a unified view over

multiple data sources. An Entity Name System (ENS) is a thesaurus for

entities, and is a crucial component in a data integration architecture.

Populating a Linked Data ENS is equivalent to solving an Artificial

Intelligence problem called instance matching, which concerns identifying

pairs of entities referring to the same underlying entity.

This dissertation presents an instance matcher with four properties,

namely automation, heterogeneity, scalability and domain independence.

Automation is addressed by employing inexpensive but well-performing

heuristics to automatically generate a training set, which is employed by other

machine learning algorithms in the pipeline. Data-driven alignment

algorithms are adapted to deal with structural heterogeneity in RDF graphs.

Domain independence is established by actively avoiding prior assumptions

about input domains, and through evaluations on ten RDF test cases. The full

system is scaled by implementing it on cloud infrastructure using MapReduce

algorithms.

vii

Table of Contents

List of Tables ……………………………………………………………...x

List of Figures…………………………………………………………….xi

Chapter 1 Introduction…………………………………………………….1

 1.1 Linked Data……………………………………………..........3

 1.2 An Entity Name System……………………………………...4

 1.3 Research Question and Thesis………………………………..6

 1.4 Dissertation…………………………………………………..8

 1.5 Contributions ………………………………………………...9

Chapter 2 Background………………………………..………………….13

 2.1 Structured Data Models……………………………….…….13

 2.1.1 Resource Description Framework (RDF) ……………14

 2.1.2 Relational Database (RDB) Model…………………...15

 2.1.3 Serializing RDF Data………………………………....16

 2.2 Instance Matching….……………………………………….19

 2.2.1 Blocking Step………………………………………....20

 2.2.2 Similarity Step……………………………………..….29

 2.2.3 Evaluating Instance Matching………………………...33

 2.3 Heterogeneity.……………………………………………....36

 2.3.1 Type Heterogeneity…………………………………...36

 2.3.2 Property Heterogeneity……………………………….39

 2.3.3 Extending the Two-Step Workflow…………………...41

 2.4 Scalability… .……………………………………………….43

 2.4.1 Motivation…………………………………………….43

 2.4.2 Implementation……………………………………….45

Chapter 3 Related Work ………………………………….……………..47

 3.1 Existing Domain-Independent Systems …………………….47

 3.1.1 Systems Addressing Automation……………………..49

 3.1.2 Systems Addressing Heterogeneity…………………...52

 3.1.3 Systems Addressing Scalability……………………....54

 3.1.4 Other Systems………………………………………...56

 3.2 Discussion.………………………………………………….57

viii

 3.2.1 Automation vs. Scalability…………………………....57

 3.2.2 Issues of Structural Heterogeneity…………………....58

 3.3.3 Issues of Unsupervised Blocking……………………..60

Chapter 4 Type Alignment………………………………….…………...61

 4.1 Motivating Example and Preliminaries: A Review…………61

 4.2 Applications of Type Alignment …………………………...63

 4.3 Approach.…………………………………………………...66

 4.3.1 Possible Strategy Implementations…………………...67

 4.4 Evaluations……………………………………………..…...70

 4.4.1 Test Cases………………………………………….….70

 4.4.2 Metrics and Methodology…………………………….72

 4.4.3 Results and Discussion………………………………..73

Chapter 5 Training Set Generation……………………….……………..77

 5.1 Intuition …………………………………………………….78

 5.2 Approach……………………………………………………80

 5.3 Evaluations………………………………………………….85

 5.3.1 Test Suite……………………………………………..85

 5.3.2 Metrics ………...…………………………………..…89

 5.3.3 Setup……………………………………………….. ..89

 5.3.4 Results and Discussion…….…………………………91

Chapter 6 Property Alignment…………………………………………..95

 6.1 Approach...………………………………………………….96

 6.2 Evaluations ……….……………………………………….102

 6.2.1 Setup ………………………………………………...102

 6.2.2 Results and Discussion………………………………103

Chapter 7 Blocking and Classification……..…………………………..105

 7.1 Approach.………………………………………………….106

 7.1.1 Feature Generator …………………………………...106

 7.1.2 Learning Procedures ………………………………...111

 7.2 Evaluations …………….………………………………….119

 7.2.1 Blocking……………………………………………..119

 7.2.2 Similarity (non-iterative run) ………………………..122

 7.2.3 Similarity (iterative run) …………………………….127

ix

Chapter 8 Scalability…………………………..……………………….133

 8.1 Summary of Algorithms…………………………………...133

 8.2 Motivation and Use-Cases…………………………………134

 8.3 MapReduce Implementations ……………………………..136

 8.3.1 Type Alignment…………………………………….. 137

 8.3.2 Training Set Generator………………………………142

 8.3.3 Property Alignment and Learning Procedures………153

 8.3.4 Blocking and Similarity……………………………..155

Chapter 9 Conclusion…………..………………………………………159

 9.1 Summary…………………………………….…………….159

 9.2 Future Work….……………………………………………161

 9.2.1 Linked Data Quality…………………………………162

 9.2.2 Schema-Free Approaches.…………………………...162

 9.2.3 Transfer Learning …………………………………...163

Appendix A: MapReduce…………………..…………………………..165

References ………………………………………………..…………….167

x

List of Tables

Table 3.1: A list of domain-independent instance matchers…………..….48

Table 4.1: Test cases used in type alignment evaluations………………...71

Table 5.1: Test cases used in domain-independent evaluations………….86

Table 5.2: Comparative results for three training set generation systems

with fixed parameters…………………………………………………….93

Table 6.1: Comparative results for three property alignment systems…104

Table 7.1: Results of the preliminary blocking experiment…………….121

Table 7.2: Results of the main blocking experiment……………………122

Table 8.1: An input-output summary of selected algorithms described

heretofore………………………………….………………………..…..133

Table 8.2: Parameter settings for the four generated datasets…………..148

xi

List of Figures

Figure 1.1: An illustrative example of an interlinked RDF graph fragment

derived from Freebase and DBpedia, two real-world knowledge bases…...1

Figure 1.2: Abstract illustration of the data integration problem………….2

Figure 1.3: The Emerald data integration system…………….……………2

Figure 1.4: Population of a Linked Data Entity Name System……………5

Figure 1.5: A schematic of the instance matcher presented in the

dissertation……………………………………………………………….10

Figure 2.1: Four equivalent representations of an RDF data source

describing members of a family…………….……………………………17

Figure 2.2: The two-step instance matching workflow…………….…….19

Figure 2.3: Entities from two structurally homogeneous RDF graph

fragments used in Example 2.1…………….……………………………..21

Figure 2.4: Illustration of Sorted Neighborhood for a tabular dataset……23

Figure 2.5: A timeline illustrating the evolution of the similarity step……29

Figure 2.6: The evolution of the similarity step in Linked Data research…30

Figure 2.7: Conversion of an entity pair into numeric feature vector……30

Figure 2.8: Examples of popular features used by existing instance

matchers………………………………………………………………….31

Figure 2.9: Two RDF graph fragments illustrating type heterogeneity….37

Figure 2.10: An illustration of property alignment between the property

schemas of two compatible types in two datasets………………………..40

Figure 2.11: A possible extension of the basic two-step instance matching

workflow……………………….………………………………………...42

Figure 2.12: An illustration of two-step instance matching from a

complexity-theoretic perspective…………….…………………………..44

Figure 4.1: The running example, illustrating the motivation behind type

alignment…..…….……………………………….…………….……….. 63

Figure 4.2: Abstract depiction of the second type alignment application…65

Figure 4.3: Example of link between (Colombia) Case Law and

Constitute………………………………………………………………...72

Figure 4.4: Comparison of blocking techniques Canopy Clustering and

Heterogeneous Blocking, with and without type alignment……………...74

Figure 4.5: Results of auxiliary experiments for Canopy Clustering and the

heterogeneous DNF-BSL (Heteroblocking) for the single type 2009 in the

US government test case…………….…………………………………...75

Figure 5.1: An example illustrating the intuition behind the training set

generator (TSG) detailed in this chapter…………….……………………79

xii

Figure 5.2: Results for the test cases where maximum achieved F-Measure

did not exceed 60%…………….………………………………………...91

Figure 5.3: Results for the test cases where maximum achieved F-Measure

exceeded 60%…………….……………………………………………... 92

Figure 6.1: An illustration of property alignment…………….………….96

Figure 6.2: Two single-type RDF graphs, serialized as logical property

tables, used as running examples in this chapter for illustrating property

alignment………………………………………………………………...98

Figure 7.1: Step 1 of Algorithm 7.2, using a pruning strategy………….114

Figure 7.2: Construction of multimaps and reversed multimaps………..115

Figure 7.3: SVM results for the test cases where highest-achieved F-

Measure was over 60%…………….……………………………………125

Figure 7.4: SVM results for the test cases where highest-achieved F-

Measure was below 60%…………….……………………………….…126

Figure 7.5: Pre-iteration SVM, post-iteration SVM and alternate baseline

results for the six cases where an improvement in highest-measured F-

Measure performance for post-iteration SVM was observed…………...129

Figure 7.6: Pre-iteration SVM, post-iteration SVM and alternate baseline

results for the four cases where an improvement in highest-measured F-

Measure performance for post-iteration SVM was not observed………130

Figure 7.7: Pre-iteration and post-iteration SVM results for IIMB-062 when

re-training on the top 200 (rather than the top 50) samples…………….130

Figure 8.1: Illustration of the MapReduce-based algorithm for scalable type

alignment…………….……………………………………………..….. 138

Figure 8.2: Results of the MapReduce-based type alignment algorithm on

DBpedia and Freebase, using blocking metrics…………….…………...141

Figure 8.3: Illustration of the chained MapReduce-based algorithm for

generating token Inverse Document Frequencies (IDF) statistics………143

Figure 8.4: Illustration of the MapReduce-based Training Set

Generator………………………………………………………………. 144

Figure 8.5: Serialization Results on a 4-node HDInsight cluster………..150

Figure 8.6: Training set generator run-time results…………….…….…152

Figure 8.7: The mean number of instance pairs output by the TSG as a

function of the total number of records, with the mean taken across the three

duplicates distributions…………….………...…………………….. …..153

Figure 8.8: Blocking-similarity run-time results using Attribute Clustering

(AC) blocking and a Gaussian Processes (GP) classifier ……………..158

Figure A.1: Abstract overview of the MapReduce paradigm…………...165

1

Chapter 1: Introduction

Resource Description Framework (RDF) is a graph-based data model

used widely to represent and publish structured data (Klyne & Carroll, 2006).

The structure in RDF data can be conveniently visualized using directed

labeled graphs.

Figure 1.1: An illustrative1 example of an interlinked RDF graph fragment derived from

Freebase and DBpedia, two real-world knowledge bases. Successful instance matching, defined in the

thesis statement, would output the dashed :sameAs declarations connecting equivalent entities.

Figure 1.1 illustrates a running example that will be used throughout

this dissertation. Nodes in the graph represent entities (e.g. the node with ID

dbpedia:Allen_Paul represents the entity Paul Allen in the knowledge base

DBpedia) and edges represent either attributes of an entity (e.g. “01/21/1953”

is the birthdate of Paul Allen) or relationships between two entities (e.g. Paul

Allen is the co-founder of the company entity Microsoft).

1 The fragment may differ from the actual data in the current versions of Freebase and DBpedia.

2

Figure 1.2: Abstract illustration of the data integration problem.

Data integration is the problem of providing a unified interface over

multiple data sources to an application or end user (Lenzerini, 2002; Doan,

Halevy & Ives, 2012). The unification may be virtual or accomplished via

wrappers, illustrated in Figure 1.2.

Figure 1.3: The Emerald data integration system. The Entity Name Service is a front-facing

component that exposes an Entity Name System (ENS).

Data integration has numerous applications (Halevy, Rajaraman &

Ordille, 2006), and continues to be an active area of research (Doan, Halevy

& Ives, 2012). A full data integration system is complex and requires

collaboration across several research areas. Figure 1.3 illustrates the schematic

3

of Emerald, a data integration system currently being developed at the RiBS2

research group at the University of Texas at Austin. The system is designed

for Linked Data, which is RDF data that has been published using a set of four

subsequently defined principles (Bizer, Heath & Berners-Lee, 2009). In order

to complete the system, a component called an Entity Name System or ENS

must be populated and exposed through an Entity Name Service (the red box

in Figure 1.3). An ENS is used to serve instance matching needs across source

databases, and is described further in Section 1.2. This dissertation addresses

the population of a Linked Data ENS.

1.1 Linked Data

The scope of data integration has grown in concert with the publishing

of new RDF data on the Web (Noy, 2004). Four principles, known as Linked

Data principles, are used to stipulate the manner in which such data is

published (Bizer et al., 2009).

The first, most basic, Linked Data principle states that entities should

be identified using Uniform Resource Identifiers (URIs). The second principle

states that URIs should be HTTP-dereferencable, so that they can be accessed

using standard Web protocols.

The two principles above do not mention RDF per se. The third

principle establishes this connection by stipulating that, when dereferenced, a

URI should provide useful information about the entity using open standards.

RDF is an3 example of an open standard that has proven to be dominant in the

Linked Data community (Bizer et al., 2009; Schmachtenberg, Bizer &

Paulheim, 2014). RDF is formally defined in Chapter 2.

The fourth principle, which is of primary concern in this dissertation,

is that data should not exist in silos, but be linked to existing datasets. Coupled

with the Open Data movement, the fourth principle has had tremendous

impact (Auer et al., 2007). For example, consider Linked Open Data4 (LOD),

which is the collection of RDF datasets published under an open license (Bizer

2 Research in Bioinformatics and Semantic Web.
3 A second example would be the SPARQL query language, which can be used to match patterns given

RDF graph inputs. In this dissertation, only the RDF standard will be of interest.

4 http://linkeddata.org/

4

et al., 2009). According to a recently published study, the LOD cloud currently

contains many billions of triples in over 1000 individually published datasets

(Schmachtenberg et al., 2014). LOD continues to grow in both variety and

volume, and has invited significant research interest in the previous decade.

1.2 An Entity Name System

On the LOD cloud, two nodes may refer to the same underlying entity,

despite having different names or identifiers. For example, the company

Microsoft is referred to using two different names (and syntactic IDs) in the

two graph fragments in Figure 1.1. For simplicity, such pairs of nodes are

referred to as being equivalent. Pairs of equivalent entities may be found either

within an individual data source, or across data sources.

In Linked Data applications, instance matching is defined as the

algorithmic problem of finding pairs of equivalent entities (Ferrara, Nikolov

& Scharffe, 2013), and then linking them using a special :sameAs property,

indicated in Figure 1.1. An important application is fulfilling the fourth

Linked Data principle. Empirical studies have shown that publishers of Linked

Data sources overwhelmingly prefer :sameAs links (over other arbitrary links)

to establish connections to published data (Schmachtenberg et al., 2014).

More generally, instance matching is known to occur in structured,

semi-structured and even unstructured data communities, typically under a

plethora of different names. Example names include entity resolution

(Benjelloun et al., 2009), deduplication (Elmagarmid, Ipeirotis & Verykios,

2007), record linkage (Elfeky, Verykios & Elmagarmid, 2002), entity linking

(Moro, Raganato & Navigli, 2014), co-reference resolution (McCarthy &

Lehnert, 1995), link discovery (Ferrara et al., 2013b), the merge-purge

problem (Hernández & Stolfo, 1995), discovering entity synonyms

(Chakrabarti, Chaudhuri, Cheng & Xin, 2012), and hardening soft databases

(Cohen, Kautz & McAllester, 2000). In the rest of the dissertation, the term

instance matching is uniformly adopted to maintain consistency.

Instance matching is a vital component of data integration, as it is

required to populate an Entity Name System or ENS. Earlier, an ENS was

defined as a thesaurus for entities and the primary means of serving instance

matching needs across data sources (Bouquet & Molinari, 2013).

5

Example 1.1: Consider again the Emerald architecture in Figure 1.3.

Suppose the architecture is being employed for an e-commerce application.

An e-commerce company (e.g. Amazon) would have a user-facing target

ontology that provides a unified interface over products, sellers and

marketplaces, in order to support applications like faceted search. The actual

data could be located in multiple sources, owned either by Amazon or multiple

third-party sellers. When a user searches for a particular product (e.g. Burt’s
Bees Baby Oil), the probability is high, owing partly to the dynamic nature of

e-commerce offerings, that the product will show up multiple times in the

sources. When querying the multiple data sources, an ENS is used for ensuring

that the system treats the various mentions of Burt’s Bees Baby Oil as

equivalent. This treatment not only affects the user-experience (by displaying

a unique entity only once), but is also vital for correct query answering and

aggregation (e.g. calculating the minimum price, and all qualified sellers for

the product).

Figure 1.4: Population of a Linked Data Entity Name System.

Figure 1.4 shows an ENS that was populated over the entities in

Figure 1.1. To correctly populate an ENS, the :sameAs edges, or synonyms,

between equivalent entities must be located. A previous study estimated that

LOD contains many such pairs of equivalent entities that are unidentified

(Papadakis, Demartini, Fankhauser & Kärger, 2010). A recent study lent

credence to this finding by showing that, despite its growth, LOD is sparse in

inter-dataset edges (Schmachtenberg et al., 2014). The vocabulary used by

LOD sources are also varied, spanning many different use-cases. In addition,

data sources are effectively schema-free, meaning that they have little useful

metadata associated with them.

6

1.3 Research Question and Thesis

These findings, together with the ongoing growth of LOD, show that

populating a Linked Data ENS is a challenging problem. The specific research

question addressed by the thesis can be stated as follows: what requirements

must an instance matcher fulfill in order to populate a Linked Data Entity

Name System, and how can it be built?

Four intuitive requirements are stated. First, the size and growth in

LOD data sources suggests that building a feasible instance matcher requires

devising solutions that meet requirements of elastic scalability, preferably

requiring computational resources that increase only linearly in the size of the

data.

A second requirement, indicated by the noise and variety in LOD

sources, is that of heterogeneity. Type heterogeneity, and its complexities, can

be understood by referring again to the example in Figure 1.1. The entity

Microsoft has type Firm in the data source Freebase, and type Company in the

data source DBpedia. On the other hand, Paul Allen has type Entrepreneur in

Freebase, and multiple types (Inventor and Person) in DBpedia. The problem

is further compounded by potential noise in type annotations, and by the

presence of a type hierarchy. Such a hierarchy is evident in Figure 1.1. In the

Freebase knowledge base, for example, Firm is a type of Organization. In the

Freebase type hierarchy, Firm is denoted as a sub-type of Organization, and

Organization is denoted as a super-type of Firm.

To avoid noisy conclusions and wasted comparisons in the presence

of many types, a good instance matcher would have to correctly align the pairs

of types and then only compare pairs of instances conforming to these types.

Not deducing a correct alignment leads to sub-optimal instance matching

outputs: for example, the two instances of Paul Allen in Figure 1.1 may not

get compared (and declared equivalent) in an instance matching pipeline, if

neither dbpedia:Inventor nor dbpedia:Person is aligned with

freebase:Entrepreneur by a type alignment algorithm.

For similar reasons, the problem of property heterogeneity (the

matching of property or edge labels) arises once types are aligned.

Considering Figure 1.1, an instance matcher would have to deduce that

freebase:co-founder_of and dbpedia:organization are properties that should

be aligned for the purposes of instance matching. Intuitively, such an

7

alignment is necessary in order to extract structural features from the input

data.

Given the expense of domain expertise, a third requirement is that a

feasible solution should exhibit a high degree of automation. This requirement

can be met by a non-adaptive system (e.g. by using a fixed similarity metric

in an appropriate feature space), but such a system would have little success

against the challenges that real-world instance matching applications are

known to present (Elmagarmid et al., 2007).

If the system is adaptive, the automation requirement can

hypothetically be fulfilled by (1) algorithms that rely on self-training (i.e.

generating their own training examples), (2) algorithms that are inherently

unsupervised (e.g. clustering), or (3) algorithms that use prior results or distant

supervision, possibly through a process of transfer learning.

Interestingly, each of the three avenues presented above has found its

utility in various applications. In the natural language processing community,

(3) seems to be particularly favored, owing to the high quality and

completeness of Wikipedia (Cucerzan, 2007), and in more traditional data

mining, (2) is favored (Bhattacharya & Getoor, 2006). In data integration, (1)

is emerging as the technique of choice (Christen, 2008b; Ma, 2014; Kejriwal

& Miranker, 2015c). In Chapter 3, where related work is reviewed, arguments

are provided against using either (2) or (3) for populating an ENS in a data

integration system.

Given the many domains5 in LOD, a fourth requirement is that the

system must also be domain-independent, rather than being tuned to the

specific needs of individual domains like biomedicine or social media. The

issue of domain-independence is largely empirical and is related to, but

different from, that of heterogeneity. For example, biomedical datasets

contain many different types, which would have to be aligned before instance

matching. An instance matcher that performs this task adequately addresses

type heterogeneity. If the instance matcher is fine-tuned to the specific needs

of the biomedical domain, and fails on other domains, it will not meet the

5 The practical definition of a domain in Linked Data is that a domain is a collection of related types.

More formally, a domain tends to be defined by a hand-crafted ontology such as the Gene ontology

(Ashburner et al., 2000). In the Relational Database setting, this is akin to a namespace in which schemas

are declared.

8

domain-independence requirement. Such a matcher relies on too much prior

knowledge about the domain to be useful on another domain6.

Grouping these observations together leads to the following thesis

statement in response to the research question stated earlier: Given the current

state of Linked Open Data, a feasible instance matcher must simultaneously

fulfill the four requirements of domain-independence, automation, scalability

and heterogeneity, referred to henceforth as the DASH7 requirements.

1.4 Dissertation

Given the thesis statement, it is natural to investigate if such a system

already exists, or can be built with minimal modifications to an existing

system. A priori, the probability of finding such a system seems to be quite

high, since instance matching has been investigated as an Artificial

Intelligence problem for over 50 years (Newcombe, Kennedy, Axford &

James, 1959). Such an impression would be misleading for two reasons.

First, the growth in data over the last decade has been enormous

(Dong & Srivastava, 2012). Any solution that is not amenable to elastic

scaling is not likely to be useful on LOD. Unfortunately, most instance

matchers proposed in the literature are inherently serial, as argued in Chapter

3.

Second, the condition of simultaneity in the thesis statement indicates

that researchers can no longer afford to decouple individual DASH

requirements. Problems with such divide-and-conquer approaches can be

illustrated with a simple example. Much of the prior instance matching

research assumes that the problem of schema matching has been perfectly

solved before the data is input to an instance matcher (Elmagarmid et al.,

2007). The implication is that the sources to be linked have entities belonging

to a single type and that the properties describing those types have been

homogenized in a pre-processing step. A cursory survey of the literature shows

that schema matching itself is a difficult problem that continues to be actively

6 This also explains why the issue is empirical. Since prior knowledge can lead to an unintentional bias in

system design, a convincing way of establishing domain independence is by using a single development
dataset but conducting multi-domain evaluations (Chapter 5).

7 The acronym is intended as a mnemonic device, and does not imply an ordering among the

requirements.

9

researched (Bellahsene, Bonifati & Rahm, 2011). In terms of the DASH

requirements, the systems ignore heterogeneity. Extending such systems to

account for either type or property heterogeneity is non-trivial.

Concerning implementation, the emergence of cloud services and

dataspaces (Jeffery, Franklin & Halevy, 2008) implies that it would be an

added boon for the system to be accessed as an on-demand service over the

Internet. Although not a requirement per se, such a service would have

enormous pragmatic benefits for efforts besides data integration that require

instance matching as a vital precondition. Three prominent utilities are

semantic search (Bouquet & Molinari, 2013), knowledge base population

(Dredze, McNamee, Rao, Gerber & Finin, 2010) and knowledge graph

identification (Pujara, Miao, Getoor & Cohen, 2013). Similar to data

integration, these are broad areas of research8, but often require solutions to

instance matching to be fully functional.

A cloud implementation is challenging both because costs must be

kept low, and the implementation can only rely on a standard set of clusters

and services. Given the novelty of the cloud, devising such an implementation

for instance matching is a relatively open problem.

1.5 Contributions

The primary output of this dissertation is an instance matcher that

putatively fulfills the DASH requirements motivated in the thesis statement.

A high-level schematic of the instance matcher is illustrated in Figure 1.5.

Without loss of generality, two multi-type RDF graphs, serialized

appropriately9, are assumed as inputs to the system. The output is a set of

:sameAs links between entities across all the types. For example, if the two

RDF graph fragments in Figure 1.1 are input to the system, the expected

output from an ideal execution are the illustrated :sameAs links in Figure 1.1.

8 For example, knowledge base population (KBP) usually requires an information extraction step in order
to extract structured information from unstructured data sources. This structured information can be

organized in RDF (Alani et al., 2003), and be input to the system developed in this dissertation.

9 Possible RDF serializations are covered in Section 2.1.3.

10

Figure 1.5: A schematic of the instance matcher presented in the dissertation. The matcher is

designed to fulfill the four DASH requirements of domain-independence, automation, scalability and

heterogeneity.

The rationale behind the two-input assumption is stated as follows. If

a single graph is provided and needs to be deduplicated, the algorithms

described in this dissertation can be modified in a straightforward fashion with

the constraint that two instances with the same syntactic ID should never be

paired. The assumption also suggests that the main motivation is in finding

links between the graphs, not in discovering additional links within individual

graphs. If this latter task is of interest, each graph should first be deduplicated,

using the system, as a preliminary step.

In a full execution of the schematic in Figure 1.5, the first step is to

resolve type heterogeneity by performing type alignment, defined as the

problem of determining (in a sense that will be made more precise in Chapter

4) pairs of types that are closely semantically related to each other. In Figure

1.1, two such alignments exist (between dbpedia:Inventor and

freebase:Entrepreneur, and also dbpedia:Company and freebase:Firm). The

notion of semantic relatedness is analogous to that of relevance measures in

the Information Retrieval (IR) community (Salton & McGill, 1986). In

Chapter 4, it is shown that simple, unsupervised techniques inspired by IR

algorithms work well for type alignment. Such alignments are akin to

constraining the scope of the problem: later algorithms only process

compatibly typed entities from the overall graph inputs.

A core contribution of this dissertation is an unsupervised algorithm

called a training set generator (TSG), which uses a combination of fast,

intuitive heuristics to output a (possibly noisy) seed training set that can be

used to bootstrap the learning process for finer-grained tasks. As detailed in

11

Chapter 3, addressing the automation requirement turns out to be a challenging

bottleneck in instance matching architectures. Specifically, training examples

are difficult to locate owing both to data sparsity, as well as the dynamic,

metadata-poor nature of Linked Open Data (Papadakis et al., 2013). The

approach and its empirical viability are both detailed in Chapter 5. To the best

of our knowledge, this dissertation presents the first RDF-based TSG that can

be usefully employed to execute an entire instance matching pipeline in a

completely unsupervised fashion. In Chapter 8, we illustrate a MapReduce-

based implementation of the algorithm as an auxiliary contribution.

Once generated, the training examples are used for resolving property

heterogeneity by adaptively generating a set of property alignments. In

principle, property alignment is similar to type alignment, but turns out to be

a finer-grained problem with some specific requirements10 that must be

fulfilled in order for later steps in the pipeline to be successful. Simple

approaches, and even a relatively sophisticated baseline from the schema

matching literature, are shown to fall short empirically of fulfilling these

requirements (Section 6.2).

As a second core contribution, we present a parameter-free property

alignment algorithm in Chapter 6 that uses an intuitive approach to fulfill the

requirements in a domain-independent fashion. The property alignments thus

output are used by later machine learning algorithms to extract structural

features that prove useful in discriminating duplicates from non-duplicates.

The next step, blocking, is a preprocessing step that uses a function,

called a blocking key, to cluster approximately similar (and compatibly typed)

entities into overlapping blocks. Only entities that share a block are paired and

considered candidates for further comparison in a similarity step (Christen,

2012b). This is in contrast to a naïve one-step similarity approach that

compares every entity in one dataset with every entity in the other dataset and

entails quadratic complexity. Traditionally, the similarity step was more

heavily researched than blocking, with current state-of-the-art work framing

the problem as binary machine learning classification (Elmagarmid et al.,

2007; Köpcke, Thor & Rahm, 2010).

10 One of these requirements, discussed in Chapter 6, is that the property alignment must have high recall

(with respect to a manually determined ground-truth) in order for later steps in the pipeline in Figure 1.5

to execute successfully.

12

In the last ten years, blocking has become an intensely studied

problem, in part because of the growth of large, heterogeneous datasets

(Christen, 2012b; Papadakis et al., 2013). In the Relational Database (RDB)

community, the problem of adaptively learning blocking keys from training

data is well-studied. A particular class of blocking keys, called Disjunctive

Normal Form (DNF) blocking keys, is known to have some excellent

theoretical and empirical properties (Michelson & Knoblock, 2006; Bilenko,

Kamath & Mooney, 2006).

As a third core contribution, we present both formalism and a learning

algorithm for learning and executing DNF blocking keys on heterogeneous

RDF data in Chapter 7. Prior to the work described in this dissertation, DNF

blocking keys could only be learned and executed on homogeneous RDBs.

We show that the DNF blocking keys learned using the generated training set

and the property alignment as inputs often outcompete a state-of-the-art RDF

blocking algorithm. In Chapter 7, the features and specific machine learning

methodology used for the similarity step are also detailed.

Upon execution of blocking and similarity, the :sameAs links output

by the overall system in Figure 1.5 are collected and can be processed further

by upstream applications. In the context of this dissertation, the assumption is

that the :sameAs links will be used for populating a Linked Data Entity Name

System. Depending on the architecture of the data integration system, the ENS

may be physically materialized, or accessed virtually through a set of

Application Programming Interfaces (APIs). In the Emerald architecture

illustrated in Figure 1.3, the Entity Name Service is an example of such an

API. Although the engineering details behind constructing an ENS are

important, the key assumption made by all implementations is the availability

of a set of :sameAs links. The scope of this dissertation is limited to the system

illustrated in Figure 1.5.

Finally, in support of the scalability desiderata discussed in Sections

1.3 and 1.4, the system in Figure 1.5 is implemented both serially and in

MapReduce. In Chapter 8, we illustrate MapReduce-based implementations

of the algorithms described in Chapters 4-7. These implementations are

executed in public cloud infrastructure (HDInsight clusters on Microsoft

Azure) using modest resources, and are found to scale even for datasets with

millions of entities.

13

Chapter 2: Background

Instance matching has been researched for at least 50 years in both the

structured and unstructured data communities in a variety of methodological

contexts (e.g. rule-based vs. statistical approaches) (Newcombe, Kennedy,

Axford & James, 1959; Elmagarmid, Ipeirotis & Verykios, 2007). An

exhaustive treatment of this research is beyond the scope of this dissertation.

Instead, this chapter is limited to two goals. First is a synthesis of common

trends that have emerged over the last 50 years. Despite the diversity of

research, there is widespread consensus on a number of issues, including the

abstract workflow of an instance matcher. The second goal is an exposition of

important differences that have emerged over 50 years. As will be shown,

these differences tend to be algorithmic, rather than conceptual, and represent

a natural evolution of the field over 50 years.

Note that specific systems are not critiqued in this chapter. Chapter 3

is exclusively dedicated to discussing related work from the lens of the thesis

requirements. Instead, the motivation is to provide a contextual background

for the rest of the dissertation.

2.1 Structured Data Models

In this dissertation, the primary data model is assumed to be the

structured Resource Description Framework (RDF) model (Klyne & Carroll,

2006). The Relational Database (RDB) model is also important for historical

reasons, given that much of the instance matching literature has traditionally

been confined to the RDB community (Elmagarmid et al., 2007). In multiple

contexts, research in the RDB community has been productively utilized to

solve a compatible problem (e.g. query optimization) on RDF graphs (Angles

& Gutierrez, 2005; Sequeda & Miranker, 2013; Sahoo et al., 2009). This

suggests that an interesting synergy exists between the two models, and

neglecting the RDB model risks not making good use of this synergy.

14

2.1.1 Resource Description Framework (RDF)

Resource Description Framework (RDF) is a graph-based data model.

An RDF graph comprises a set of triples.

Definition 2.1 (RDF triple) Given three disjoint sets of ܫ, of ,ܮ and ܤ

Internationalized Resource Identifiers (IRIs), abstract identifiers and literals

respectively, a triple in the Resource Description Framework (RDF) data

model is a 3-element tuple ሺݐ݆ܾܿ݁ݑݏ, ,11ݕݐݎ݁݌݋ݎ݌ ׫ ܫ א ݐ݆ܾܿ݁ݑݏ ሻ, whereݐ݆ܾܿ݁݋ א ݐ݆ܾܿ݁݋ I and א ݕݐݎ݁݌݋ݎ݌ ,ܤ ׫ ܫ ׫ ܤ The triple is referred to as .ܮ

an RDF triple.

Visually, a triple represents an edge in a directed, labeled graph. Per

the first Linked Data principle (Section 1.1), all IRIs used in RDF data sources

published as Linked Data must be Uniform Resource Identifiers (URIs), a

strict subset of IRIs (Bizer, Heath & Berners-Lee, 2009). In particular, abstract

identifiers are not used for representing Linked Data. In the rest of the

dissertation, all non-literals in an RDF graph are necessarily assumed to be

URIs.

In Chapter 1, Figure 1.1 illustrated an example of two interlinked RDF

graph fragments sourced from DBpedia and Freebase. The following

conventions are adopted in visualizing the data. First, oval nodes are used to

represent URI subjects and objects, while rectangular nodes are used to

represent literal objects. By convention, URI elements are represented using a

prefix followed by a colon and an identifying string. The prefix is typically

used to represent the namespace or vocabulary of the entity. In this

dissertation, the prefix is used to indicate the source containing the entity of

discourse. For example, the URI freebase:Microsoft in Figure 1.1 indicates

that the entity is from Freebase. Empty prefix strings indicate a globally

applicable vocabulary. Such strings are typically used for representing

properties with special semantics (e.g. :sameAs and :type in Figure 1.1).

RDF is the data model used for publishing Linked Data, but in the full

Semantic Web technology stack, it is also the basis for representing RDF

Schema (RDFS), and the Web Ontology Language (OWL) (Allemang &

Hendler, 2011). The RDFS standard is described as a semantic extension of

RDF. It provides a convenient data modeling vocabulary that can be used to

11 Predicate is sometimes used in place of property; property is uniformly used in this dissertation.

15

publish a metadata-level schema for an RDF dataset. OWL is a semantic

markup language primarily used for representing and publishing ontologies

(McGuinness & Harmelen, 2004). Ontologies contain more detailed metadata

information (e.g. functional constraints) than simple RDFS schema. OWL

also provides various reasoning capabilities over ontologies.

As the principal concern is the RDF data itself, and not the associated

metadata, the full details of both RDFS and OWL are beyond the scope of this

dissertation. In Linked Open Data, both missing and shallow schemas are

common (Schmachtenberg, Bizer & Paulheim, 2014). Namely, Linked Data

is roughly schema-free12, meaning that any feasible algorithm, whether for

instance matching or not, cannot rely on a detailed metadata-level information

set (Papadakis, Ioannou, Palpanas, Niederée & Nejdl, 2013).

2.1.2 Relational Database (RDB) Model

The Relational Database (RDB) model is a highly structured tabular

model with constraints and specifications formally based on first-order logic

(Codd, 1970). The model is accompanied by a Relational Algebra that forms

the underlying basis for expressive query13 languages like the Structured

Query Language (SQL) (Date & Darwen, 1993).

Formally, the schema ܵ′ of an RDB can be defined as a set of relation

names. Each name is associated with a list of attributes. An RDB instance ܵ

associates, with each relation name ܴ′ א ܵ′, a set ܴ of records. Although

technically a set, ܴ can be visualized as a table, and each of its attributes can

be visualized as a column in the table. The visualization can be extended by

imagining an RDB as consisting of a set of tables, with directed edges

indicating constraints (e.g. foreign keys) both within and between tables. A

more formal visualization can be achieved through logical Entity Relationship

models (Chen, 1976).

12 Some schema information is usually available; hence, the qualification roughly. For example, the

domain (e.g. social media) of a dataset is typically known, and type declarations (e.g. freebase:Microsoft

:type freebase:Firm in Figure 1.1) are often available for many LOD entities.
13 It may seem strange that querying was not described in the context of RDF. While a SQL-like

language, SPARQL (Quilitz & Leser, 2008), exists for querying RDF data, there is no explicit

requirement (per Linked Data principles) to provide a SPARQL-processing endpoint over published data.

16

2.1.3 Serializing RDF Data

For many problems, research on tabular data models (of which RDBs

are the most noted example) far predates the relatively recent RDF data model.

While the two kinds of models are visualized rather differently, there is

precedence to believe that research on a particular problem in the tabular

community provides insight on a similar problem in the RDF community. As

an example, the Ultrawrap system uses RDB query optimizers to optimize

SPARQL queries issued over RDB sources (Sequeda & Miranker, 2013).

There is also a standard for mapping RDBs to RDF sources (Sahoo et al.,

2009).

Concerning instance matching, this close connection can be exploited

by appropriately serializing RDF data. Figure 2.1 shows four equivalent ways

of representing a small RDF dataset describing members of a family.

The first of these (Figure 2.1a) is a directed, labeled graph

representation, similar to the example in Figure 1.1. In practice, this

representation is used only for visualization purposes.

Figure 2.1b represents the graph as a set of triples, and conforms

closely to Definition 2.1. Despite not being the most space-efficient

representation, the set-of-triples format is widely used for publishing RDF

graphs on the Web14. This is because it is simple to parse, and can be easily

distributed.

The two representations central to this dissertation are the logical

property table representation and the NoSQL representation. Figure 2.1c

illustrates a logical property table serialization of RDF data (Kejriwal &

Miranker, 2014; 2015a). In logical form, the tables can be thought of as loosely

structured (Kejriwal & Miranker, 2014). Each unique URI that occurs at least

once as a subject (in an RDF triple) in the set-of-triples representation has its

own row in the property table. Cells in the table can contain multiple values

(using a reserved delimiter, such as semicolon in Figure 2.1c) or no values

(indicated through a reserved keyword, such as ݈݈݊ݑ in Figure 2.1c).

14 For example, the Freebase dump (over 400 GB in uncompressed form) is available only in this format.

17

Figure 2.1: Four equivalent representations of an RDF data source describing members of a

family.

18

Formally, the table is described by a property schema, which maps

each property in the set-of-triples representation to its own column. The ݐ݆ܾܿ݁ݑݏ column serves as the key of the table. The logical property table is

preferable for serial solutions, since all rows must be able to access the

property schema.

Previously, property tables had been proposed as physical data

structures for storing and querying RDF data efficiently (Carroll et al., 2004).

The goal of such data structures is to use underlying Relational Database

architectural principles for similar operations on RDF graphs.

Figure 2.1d illustrates a NoSQL representation of the RDF data. Each

entity is now represented as a set of < ,ݕ݁݇ ݁ݑ݈ܽݒ − ݐ݁ݏ > pairs. The

representation is similar to that of the logical property table, but the

information set of an entity is now self-contained. This is because the labels

of the relevant properties are included as keys in each set, independent of their

inclusion in other sets. This makes the representation particularly suitable for

parallel and distributed processing, as a set of < ݕ݁݇ − ݐ݁ݏ ݁ݑ݈ܽݒ > pairs can

be encoded and parsed in a self-contained XML/JSON-like format, enabling

independent distributing and processing of entities.

The argument in favor of using the two representations illustrated in

Figures 2.1c and 2.1d is that many existing tabular instance matchers do not

rely heavily on structural information (e.g. constraints), and would be robust,

with few modifications, to the occasional missing15 value, redundancy or

functional violation in a tabular dataset (Elmagarmid et al., 2007). In principle,

such systems are also applicable to tabularly serialized RDF data. In practice,

the loose structure can cause unanticipated problems, as discussed in later

chapters.

This section concludes with a note on unstructured data, typically

assumed to be free text represented in natural language. Instance matching in

the Natural Language Processing (NLP) community is primarily referred to as

co-reference resolution (McCarthy & Lehnert, 1995). Because of the special

nature of natural language compared to more structured data, a co-reference

resolution pipeline involves steps that are inapplicable to structured instance

matching (e.g. syntactic parsing). For this reason, the two communities have

diverged in their techniques (Elmagarmid et al., 2007; Christen, 2012a). Co-

15 Such robustness is known to be important in real-world instance matching. For example, it is unlikely

that, in the case of a customer database, there is a value for every attribute of a customer.

19

reference resolution is not considered further in this dissertation. An NLP

application that is more relevant to the problem studied in this dissertation is

knowledge base population, which was briefly discussed (in Section 1.4) as a

potential non-data integration application for the system in Figure 1.5.

2.2 Instance Matching

Even in early research, the quadratic complexity of pairwise instance

matching was well recognized (Newcombe et al., 1959). Given two data

sources ܦଵ and ܦଶ, represented generically as sets of entities, a naïve instance

matcher would evaluate all possible entity pairs. Assuming constant cost per

evaluation, the run-time would be ܱሺ|ܦଵ||ܦଶ|ሻ.

In the rest of this discussion, for two input graphs ܦଵ and ܦଶ, an entity

pair ሺ݁ଵ, ݁ଶሻ is denoted as bilateral iff ݁ଵ א ଵ and ݁ଶܦ א ଶ. Given aܦ

collection of entities from ܦଵ ׫ ଶ, two entities ݁ଵ and ݁ଶ are said to beܦ

bilaterally paired iff ሺ݁ଵ, ݁ଶሻ is bilateral.

Figure 2.2: The two-step instance matching workflow.

To mitigate the quadratic complexity of generating all possible

bilateral pairs, a two-step approach is adopted, as illustrated in Figure 2.2

(Christen, 2012a). The first step, blocking, uses a many-many function called

a blocking key to cluster approximately similar entities into overlapping blocks

(Christen 2012b). Only entities sharing a block are bilaterally paired and

become candidates for further evaluation by a link specification function in

the similarity step (Volz, Bizer, Gaedke & Kobilarov, 2009). The link

specification function may be either Boolean or probabilistic, and is used to

indicate whether a candidate entity pair represents the same underlying entity.

20

In the majority of instance matching systems, ܦଵ and ܦଶ are assumed

to be structurally homogeneous16 (Elmagarmid et al., 2007; Christen, 2012a).

That is, they are assumed to contain entities of the same type (e.g. Firm), and

are described by the same property schema (Figure 2.1c). An important special

application of structural homogeneity is deduplication, whereby matching

entities in a single dataset must be found. In the rest of this section (and in

Figure 2.2), structural homogeneity between input data sources is assumed. In

Section 2.3, the model is extended to include structural heterogeneity.

2.2.1 Blocking Step

Following the intuitions described earlier, a blocking key is defined

as follows.

Definition 2.2 (Blocking key) Given a data source ܦ represented as

a set of entities, a blocking key ܭ is a many-many function that takes an entity

from ܦ as input and returns a non-empty set of literals, referred to as the

blocking key values (BKVs) of the entity.

Let ܭሺ݁ሻ denote the set of BKVs assigned to the entity ݁ א by the ܦ

blocking key ܭ. Given two data sources ܦଵ and ܦଶ, two blocking keys ܭଵ and ܭଶ can be defined using Definition 2.2. Multiple definitions are typically used

only when ܦଵ and ܦଶ are heterogeneous. At present, a single key (i.e. ܭଵ ଶܭ= = ଵܦ ,applicable to two structurally homogeneous input data sources ,(ܭ

and ܦଶ, is assumed. Without loss of generality, the literals in Definition 2.2

are assumed to be strings.

Example 2.1 (Blocking homogeneous datasets): Figure 2.3

illustrates two structurally homogeneous RDF graph fragments describing

people. An example of a good blocking key ܭ applicable to the two datasets

is ܭ = :ሺݏ݊݁݇݋ܶ ݈ܾ݈ܽ݁ሻ ׫ :ሺݕݐ݅ݐ݊݁݀ܫ ܽ݃݁ሻ. Applied on an entity ݁ from

either dataset, ܭ would return a set of BKVs that contains the tokens in an

entity’s label, as well as a single string for the age. For example, when applied
to the entity : from the dataset in Figure 2.3a, the output ݏݐܽ݁ܤ_ݔܽݎܥ_݊ܽ݋ܬ

16 The phrase structural homogeneity was introduced by Elmagarmid et al. (2007) in their survey of

instance matching.

21

(set of BKVs) returned17 by the blocking key would be {"݊ܽ݋ܬ", ,"ݔܽݎܥ" ,"ݏݐܽ݁ܤ" "͵ʹ"}. Similarly, when applied to the entity : .ܬ .ܥ_ ,"ܬ"} from Figure 2.3b, the output returned would be the set ݏݐܽ݁ܤ_ ,"ܥ" ,"ݏݐܽ݁ܤ" "͵Ͷ"}. Since the two BKV sets have a common BKV

: the entities referenced by the URIs ,("ݏݐܽ݁ܤ") .ܬ .ܥ_ : and ݏݐܽ݁ܤ_ .share a block ݏݐܽ݁ܤ_ݔܽݎܥ_݊ܽ݋ܬ

Given the single blocking key ܭ, a candidate set ܥ of bilateral entity

pairs can be generated by a blocking method using the BKVs of the entities.

Three prominent blocking methods are described next, followed by the

learning of blocking keys.

Figure 2.3: Entities from two structurally homogeneous RDF graph fragments used in Example

2.1. (a) was introduced earlier in Figure 2.1, while (b) is a second dataset that has the same property schema

as (a).

17 This example assumes that a practical implementation of the ܶݏ݊݁݇݋ function includes a sufficiently

expressive set of delimiters. For ܶݏ݊݁݇݋ to work as expected in the example, the set must include the

whitespace and period delimiters.

22

Traditional Blocking

Given a blocking key ܭ, an obvious solution is to generate the

candidate set ܥ as the set {ሺ݁௜, ௝݁ሻ |݁௜ א ଵܦ ר ௝݁ א ଶܦ ר ሺ݁௜ሻܭ ת)ܭ ௝݁) ≠{}}. In other words, ݁௜ and ௝݁ are bilaterally paired iff they were assigned a

common BKV. The definition of ܥ as a set further implies that ݁௜ and ௝݁ may

share multiple blocking key values.

A problem with this so-called traditional blocking18 approach is that

of data skew (Christen, 2012b). Consider, for example, two entities from a

People database that are blocked based on the tokens in their last names. Last

name frequencies in many countries tend to exhibit skew for some values (e.g.

Smith in English-speaking countries). A consequence of the skew is that the

run-time of the blocking method ends up being roughly proportional to the

number of pairs generated by the largest block.

Despite this problem, traditional blocking is often the first line of

attack in practical systems (Christen, 2012b; Sadosky, Shrivastava, Price &

Steorts, 2015). In recent years, researchers have modified traditional blocking

to handle the large blocks that result from skew (Papadakis et al., 2013). A

simple method that is easy to implement and difficult to outperform is block

purging. The premise of the method is that, with a sufficiently expressive

blocking key, blocks that are too large can be safely ignored. Such blocks are

most likely indexed by BKVs that are equivalent to stop-words. The algorithm

takes a purging threshold as an input parameter, and discards all blocks that

have more bilateral pairs than this threshold (Papadakis et al., 2013). The

threshold may be learned from the data, and is also empirically robust to good

default values (Kejriwal & Miranker, 2015c), as investigated in Chapter 7.

Sorted Neighborhood

Another influential blocking method that was fundamentally designed to

guarantee a bound on the size of the candidate set is the Sorted Neighborhood

(SN) method, also known as merge-purge (Hernández & Stolfo, 1995). The

18 Also called hash-based blocking when the blocking key is explicitly constrained to return at most one

blocking key value for an input entity. In some papers, hash-based blocking is considered the same as

traditional blocking (Christen, 2012b).

23

algorithm, based on equational theory, works as follows. First, a single

blocking key value (BKV) is generated for each entity using a many-one

blocking key. Next, the BKVs are used as sorting keys to impose an ordering

on the entities. Finally, a window of constant size ݓ is slid over the sorted list.

All entities sharing a window are added to the candidate set (Figure 2.4).

Figure 2.4: Illustration of Sorted Neighborhood for a tabular dataset. Assuming a sliding

window of size 3 (ݓ = ͵), the final candidate set, generated after the method has terminated, contains

eleven pairs of records (referred to by their IDs).

Example 2.2 (Sorted Neighborhood): Figure 2.4 illustrates a small

tabular database describing people. A single blocking key value (BKV) is

generated for each entity by concatenating (in order) the initials of tokens

present in the first and last names, as well as the first digit of the zip code. The

records in Figure 2.4 are sorted using the BKVs as sorting keys. Assuming a

sliding window ݓ of size 3, record pairs ሺͳ,ʹሻ, ሺͳ,͵ሻ and ሺʹ,͵ሻ are added to

the (initially empty) candidate set ܥ in the first sliding iteration, since the

records with IDs 1, 2 and 3 share the first window. The window slides forward

by one record, and in the second iteration, new record pairs ሺʹ,Ͷሻ and ሺ͵,Ͷሻ

are added to ܥ. The method terminates when, at the end of the fifth iteration,

the window cannot slide any further.

The sliding window has two implications for candidate set generation.

First, entities that do not have the same blocking key value may still get paired.

An example of such a pair in Figure 2.4 is ሺ͵,Ͷሻ. Second, some entities with

the same blocking key value may not get paired. For example, if the sliding

window parameter ݓ had been 2 instead of 3 in Figure 2.4, the pair ሺͳ,͵ሻ

would not have been added to the candidate set, despite the two records having

the same BKV ܴܥ͹.

24

Assuming that the window size ݓ is much smaller than the total

number of entities19, Sorted Neighborhood has time and space complexity that

is linear in the size of the data. For this reason, it has endured as a popular

blocking technique in the instance matching community. Numerous variations

now exist (Christen, 2012b). The main differences between these versions and

the original version are input data types (e.g. XML Sorted Neighborhood vs.

Relational), and various ways of tuning the sliding window parameter (e.g.

adaptive vs. constant) for maximal performance (Puhlmann, Weis &

Naumann, 2006; Yan, Lee, Kan & Giles, 2007). A major trend has been the

proposal of SN algorithms that run on distributed architectures (Kolb, Thor &

Rahm, 2012; Ma & Yang, 2015).

A disadvantage of SN algorithms is that they rely on a single-valued

blocking key. The authors of the original SN algorithm recognized this as a

serious limitation and proposed multi-pass SN, whereby multiple blocking

keys could be used to improve coverage (Hernández & Stolfo, 1998). For a

constant number of passes, the run-time of the original method is not affected

asymptotically. Practical scaling is achieved by limiting the number of passes

to the number of cores in the processor.

Even in multi-pass SN, each blocking key still remains single-

valued20, precluding the use of expressive blocking keys or even simple token-

based set similarity measures that have high redundancy. Extending SN to

account for heterogeneous data sources is also non-trivial (Kejriwal &

Miranker, 2015d). For this reason, the application of Sorted Neighborhood in

Linked Data instance matchers is limited. Instead, the use of an expressive

blocking key, combined with a simple blocking method such as traditional

blocking with block purging, has gained traction (Papadakis et al., 2013;

Kejriwal & Miranker, 2015c), with one possible implementation detailed in

Chapter 7.

19 A reasonable assumption, since a window size of ݓ < ͳͲ was found to be empirically sufficient
(Hernández & Stolfo, 1998).

20 A second problem occurs when many entities are assigned the same BKV. Given a link specification

function and ݓ ൒ ʹ, determining an optimal ordering (i.e. contributing maximum duplicate pairs to the

candidate set) of same-BKV entities is NP-hard.

25

Canopies

Clustering methods such as Canopies have also been successfully

applied to blocking in the context of Relational Databases (McCallum, Nigam

& Ungar, 2000; Baxter, Christen & Churches, 2003). The basic algorithm

takes a distance function and two threshold parameters ݃݅ݐℎݐ ൒ Ͳ and ݈݁ݏ݋݋ ൒ and operates in the following way for deduplication. First, a ,ݐℎ݃݅ݐ

seed entity ݁ is randomly chosen from the dataset. All entities that have

distance less than ݈݁ݏ݋݋ are assigned to the canopy represented by ݁. Among

these entities, the entities with distance less than ݃݅ݐℎݐ (from the seed entity)

are removed from the dataset and not considered further. Another seed entity

is now chosen from all entities still in the dataset, and the process continues

till all points have been assigned to at least one canopy. The method can be

extended to two input data sources by using every entity in the smaller data

source as a seed entity. The extension has the additional advantage of

rendering the original randomized algorithm, deterministic.

Note that, unlike Sorted Neighborhood, Canopies does not rely on a

blocking key, and instead takes a distance function as input. For this reason,

at least one work has referred to it as an instance-based blocking method, and

distinguished it from feature-based blocking methods such as Sorted

Neighborhood (Ma, 2014).

Similar to Sorted Neighborhood, several variants of Canopies have

been proposed over the years, but the basic framework continues to be popular

(Christen, 2012b). For example, a nearest-neighbors method could be used for

clustering entities, rather than a threshold-based method. In yet another

variant, a blocking key can be used to first generate a set of BKVs for each

entity, and Canopies can then be executed by performing distance

computations on the BKV sets of entities, rather than directly on the entities

themselves (Christen, 2012b). Because this variant relies on a blocking key, it

can no longer be considered an instance-based blocking method.

In the Canopies framework, each canopy represents a block. The

method has been found to work well with a number of token-based set

similarity measures, including Jaccard and cosine similarity (Baxter et al.,

2003). Till recently, when we employed it as a baseline, its performance was

not evaluated on loosely structured RDF data. Those evaluations are presented

and discussed in Chapter 7.

26

Learning Blocking Keys

Historically, the blocking key was assumed as a given, typically hand-

crafted by a domain expert. In Chapter 1, automation was described as a

DASH requirement for populating a Linked Data Entity Name System. In the

context of blocking, the need for adaptively learning a blocking key from

training data was first addressed by two independent papers (Bilenko, Kamath

& Mooney, 2006; Michelson & Knoblock, 2006). Both papers defined a

particular class of blocking keys known as Disjunctive Normal Form (DNF)

blocking keys, and showed that they exhibited excellent empirical

performance.

A DNF blocking key can be constructed by starting with a set of

indexing functions that take a primitive data type as input and return a set of

primitives as output21. Without loss of generality, String is assumed as the only

available primitive data type.

Example 2.3 (Indexing function): An example of an indexing

function introduced earlier in Example 2.1 is ܶݏ݊݁݇݋, which relies on

delimiters to tokenize a string (e.g. ǲܬ. .ܥ ,"ܬ"} .ǳ) into a set of strings (e.gݏݐܽ݁ܤ ,"ܥ" .({"ݏݐܽ݁ܤ"

A blocking predicate ܾ௣௥௢௣ on entities is now defined by pairing an

indexing function ℎ with a property ݌݋ݎ݌, and adopting the following

semantics22. The logical predicate ܾ ௣௥௢௣ ሺ݁ଵ, ݁ଶሻ is satisfied iff the intersection ℎ௣௥௢௣ ሺ݁ଵሻ ℎ௣௥௢௣ ሺ݁ଶሻ is non-empty, where ℎ௣௥௢௣ሺ݁ሻ is defined as the set ת

obtained by applying ℎ on the object value of ݁ for property ݌݋ݎ݌. Typically,

the predicate ܾ mnemonically indicates the underlying indexing function ℎ. In

an abuse of notation, the property is included in parenthesis. Example 2.4

implements these ideas in practice.

Example 2.4 (Blocking predicate) An example of a blocking

predicate is ݊݁݇݋ܶ݊݋݉݉݋ܥሺ: ݈ܾ݈ܽ݁ሻ. ݊݁݇݋ܶ݊݋݉݉݋ܥ indicates that ܶ ݏ݊݁݇݋

is the underlying indexing function, while : ݈ܾ݈ܽ݁ is the underlying property

used by the predicate. Considering the data in Figure 2.3, ݊݁݇݋ܶ݊݋݉݉݋ܥሺ: ݈ܾ݈ܽ݁ሻ is satisfied (i.e. returns ܶ݁ݑݎ) for the entity pair

21 As in the rest of this section, structural homogeneity is assumed.

22 In the original paper, the predicate ܾ was referred to as a general blocking predicate; once paired with

a property ݌݋ݎ݌, the resulting predicate ܾ௣௥௢௣ was referred to as a specific blocking predicate (Bilenko,

Kamath & Mooney, 2006).

27

 ሺ: ,ݏݐܽ݁ܤ_ݔܽݎܥ_ ݊ܽ݋ܬ ∶ .ܬ .ܥ_ ሻ since the two entities share a commonݏݐܽ݁ܤ_

token ("ݏݐܽ݁ܤ") in their labels.

A Boolean expression, called a blocking scheme, can be formed by

using these predicates as atoms (Bilenko et al., 2006). For well-defined

semantics, negated atoms are disallowed. The expression can be canonically

represented in Disjunctive Normal Form (DNF); hence, the blocking scheme

is called a DNF blocking scheme. Similar to the blocking predicates, a DNF

blocking scheme23 takes a pair of entities as input. The mnemonic

considerations earlier stated also apply.

Example 2.5 (DNF Blocking Scheme) Assuming the structurally

homogeneous input data sources in Figure 2.3, and continuing the running

example in Examples 2.3 and 2.4, an example of a single DNF blocking

scheme for both sources is the expression ݏ݊݁݇݋ܶ݊݋݉݉݋ܥሺ: ݈ܾ݈ܽ݁ሻ :ℎሺܿݐܽܯݐܿܽݔܧݏܽܪሺש ܽ݃݁ሻ ר :ሺݔ݁݀݊ݑ݋ܵ݊݋݉݉݋ܥ ݈ܾ݈ܽ݁ሻሻ. Two new

blocking predicates, named self-explanatorily, are introduced in the DNF

expression: ܿݐܽܯݐܿܽݔܧݏܽܪℎ uses the identity function as its underlying

indexing function, and returns ܶ݁ݑݎ if two strings exactly match, while ݔ݁݀݊ݑ݋ܵ݊݋݉݉݋ܥ uses a modified version of ܶݏ݊݁݇݋ as its indexing

function and returns ܶ݁ݑݎ if two strings share at least one token that sounds

the same (i.e. have the same Soundex encoding).

Logically, a bilateral entity pair is added to the candidate set if it

satisfies the scheme. In practice, the indexing functions are used, in

combination with a blocking method, to obtain near linear-time performance

and avoid data skew24.

DNF blocking keys offer several advantages over ad-hoc blocking

keys and generic distance-based measures. In particular, they are adaptive and

can be learned from a given training set of duplicates and non-duplicates

(Bilenko et al., 2006; Michelson & Knoblock, 2006). Intuitively, learning such

schemes can be phrased as an application of approximate set-covering

solutions (Carr, Doddi, Konjevod & Marathe, 2000). Another advantage is

that they are empirically robust, and are known to provide high coverage even

23 The difference between a blocking scheme and a blocking key is fairly pedantic (and unimportant for

the discussion in this chapter). Formally, the former is a Boolean expression that takes a pair of entities as

input, while the latter operates directly on an entity and yields a set of blocking key values.
24 For that reason, there is no guarantee that every bilateral entity pair satisfying the scheme will get

added to the final candidate set. For example, if block purging is the underlying blocking method, blocks

that are too large will get discarded.

28

in the presence of noise, with small cost in efficiency (Kejriwal & Miranker,

2013). This robustness is relied upon in Chapter 7, where algorithms for

learning DNF blocking schemes from noisy training data are presented.

Finally, the basic DNF blocking scheme described in this section can be

extended to heterogeneous inputs, outlined in Chapter 7.

Locality Sensitive Hashing: An Alternative to Blocking

 Locality Sensitive Hashing (LSH) is a method rapidly gaining in

popularity for approximately solving the nearest neighbors problem,

especially in high-dimensional spaces (Datar, Immorlica, Indyk & Mirrokni,

2004). In this section, a few key intuitions that guide LSH methods are

presented, followed by the relevance of LSH to blocking.

Given a distance measure ܦ, an LSH family of hash functions is

typically defined by specifying two radii (say ݎ, ݎ with ݏ < and two (ݏ

probabilities (say ݌௥ , ௥݌ ௦ with݌ > ௦). A condition for a family to be݌

considered ሺݎ, ,ݏ ௥݌ , ௦ሻ݌ − that falls within a ball ݑ is that any point ݁ݒ݅ݐ݅ݏ݊݁ݏ

of radius ݎ of a point ݒ, in the feature space on which ܦ is defined, must have

the same hash as ݒ with probability at least ݌௥, per a probability distribution

defined on the hash family. A second condition is that if ݑ does not fall within

the ball of radius ݏ, the probability that the two points have the same hash is

less than ݌௦ (Datar et al., 2004).

LSH can be directly applied to the blocking problem in a manner not

dissimilar to that of Canopies or any other unsupervised blocking method that

relies on clustering. Similar to Canopies, a distance measure (e.g. Jaccard)

would have to be assumed, and additionally, a hash family (e.g. MinHash)

would have to be designed. Given the practical similarities of both methods

within the instance matching context, and their theoretical connections to the

nearest neighbors problem, it is reasonable to suppose that their success as

blocking methods is interlinked. Both Canopies and LSH are used as baselines

(albeit, for slightly different purposes) later in this dissertation.

Another intriguing application of LSH, suggested by its reasonable

success in a large-scale ontology matching application (Duan, Fokoue,

Hassanzadeh, Kementsietsidis, Srinivas & Ward, 2012), is in the similarity

step of instance matching. The similarity step is described in Section 2.2.2,

29

where a possible way of using LSH for similarity is also covered. An LSH-

based baseline is employed in the evaluations in Chapter 7.

2.2.2 Similarity Step

While the candidate set is expected to contain most, if not all, of the

duplicate pairs in the database, it also contains many non-duplicates. A finer-

grained similarity function (relative to the blocking key) is required to

discriminate candidate non-duplicates from duplicates (Elmagarmid et al.,

2007). In the Linked Data instance matching literature, this function is

commonly denoted as a link specification function (Volz, Bizer, Gaedke &

Kobilarov, 2009).

Definition 2.3 (Link specification function) Given two data sources ܦଵ and ܦଶ, a link specification function is a Boolean function that takes as

input, a bilateral pair of entities, and returns ܶ iff the input entity pair refers ݁ݑݎ

to the same underlying entity (i.e. is a duplicate pair) and returns ݁ݏ݈ܽܨ

otherwise.

The actual link specification function is typically unknown in real-

world applications, and must be approximated. Unless otherwise indicated,

the phrase ‘link specification function’ is henceforth assumed to mean the
approximated function. The approximated function may be real-valued and

return values in the range of [Ͳ,ͳ], with a higher score indicating a higher

probability of the input pair being a duplicate.

Figure 2.5: A timeline illustrating the evolution of the similarity step.

The application of the link specification function ܮ to the pairs in the

candidate set ܥ is commonly referred to as the similarity step (Elmagarmid et

al., 2007; Christen, 2012a). Typically, only the pairs labeled as duplicates (or

scored above a certain threshold, if ܮ is real-valued) are output. Due to the

longevity of instance matching, numerous similarity techniques have been

30

researched. A good survey was provided by Elmagarmid et al. (2007), and by

Christen in his text on data matching (2012a). Figure 2.5 illustrates the

evolution of the field over 50 years.

Figure 2.6: The evolution of the similarity step in Linked Data research.

In the early days, rule-based approaches were popular, but in the last

decade, machine learning has emerged as the dominant paradigm for learning

an approximate link specification function from a training set of duplicates

(positive class) and non-duplicates (negative class). A similar evolution is

already taking place in the Linked Data community, where rule-based

approaches, such as Silk (Volz et al., 2009), still enjoy support but are being

gradually supplanted by adaptive algorithms relying on machine learning

techniques such as active learning (Ngomo, Lyko & Christen, 2013). A

timeline is presented in Figure 2.6, along with examples of specific systems,

several of which are reviewed in Chapter 3. Interestingly, many systems in

Figure 2.6 are hybrid, and combine a variety of techniques. Some real-world

advantages of hybrid algorithms (in the Linked Data community) are explored

in Chapter 6.

Figure 2.7: Conversion of an entity pair into a numeric feature vector. The two entities are

represented in logical property table form (Figure 2.1c) and are from a real-world Restaurants dataset.

31

In machine learning-based instance matching, each entity pair in the

candidate set is first converted to a numeric feature vector. Figure 2.7

illustrates the procedure for the structurally homogeneous case. In Figure 2.7,

a candidate pair, comprising duplicate restaurants, is converted to a feature

vector using a library of feature functions on each attribute. Given ݉ features

and ݊ attributes, the feature vector has exactly ݉݊ elements.

Figure 2.8: Examples of popular features used by existing instance matchers. Numeric features,

used for computations on dates, currency and other numeric data, tend to be defined in an ad-hoc fashion

and are not included in the figure.

Popular features that have been investigated in the instance matching

literature include string, token, numeric and phonetic features (Elmagarmid et

al., 2007). Figure 2.8 provides a non-exhaustive taxonomy; full details and a

comprehensive evaluation may be found in the text by Christen (2012a).

An alternative25 way of extracting features is by generating hashes

using several well-known Locality Sensitive Hashing families (Kejriwal &

Miranker, 2015c). According to this model of feature generation, the

underlying link specification function can be modeled through a functional

combination of various distance measures for which LSH-sensitive families

exist. A validation of this model would be consequential as it significantly

eases the burden of scalability26, both in the blocking and similarity steps. In

the most general case, the hashes would be used as features, and an appropriate

25 We acknowledge our anonymous reviewers for this suggestion (Kejriwal & Miranker, 2015c).

26 Mainly because LSH was designed for large-scale, high-dimensional nearest neighbors applications

(Datar et al., 2004).

32

learner would be used for discovering an explicit functional combination (or

rules) for class separation (Chapter 7).

A machine learning classifier is trained on positively and negatively

labeled training samples, and is used to classify vectors in the candidate set.

Several classifiers have been explored in the literature, with random forest,

multilayer perceptron and Support Vector Machine (SVM) classifiers all

found to perform reasonably well (Rong et al., 2012; Soru & Ngomo, 2014;

Kejriwal & Miranker, 2015c).

Independence of Blocking and Similarity

This section concludes with a note on the independence of the

blocking and similarity steps. As illustrated in Figure 2.2, the blocking step

generates the candidate set, which is further processed in the similarity step.

In practice, the two steps can interact: space can be conserved by not storing

the candidate set explicitly but classifying pairs as they are generated.

However, the assumption still holds that the decisions in the similarity step do

not affect blocking.

This independence assumption has been challenged in a small number

of applications in recent years (Whang, Menestrina, Koutrika, Theobald &

Garcia-Molina, 2009; Papadakis et al., 2013). As just one example, a blocking

technique called comparisons propagation proposes using the outcomes in the

similarity step to estimate the usefulness of a block in real time (Papadakis et

al., 2013). The premise is that if a block has produced too many non-

duplicates, it is best to discard it rather than finish processing it. By this logic,

the cost of processing the block outweighs the gain, at least in expectation.

While such techniques are appealing, their implementations have

mostly been limited to serial architectures, owing to the need for continuous

data-sharing between the similarity and block generating components (Whang

et al., 2009; Papadakis et al., 2013). Experimentally, the benefits of such

techniques over independent techniques like Sorted Neighborhood or

traditional blocking (with skew-eliminating measures such as block purging)

have not been established extensively enough to warrant widespread adoption.

The two-step workflow, with both steps relatively independent, continues to

be predominant in the vast majority of instance matching research (Köpcke &

Rahm, 2010).

33

2.2.3 Evaluating Instance Matching

The independence of blocking and similarity suggests that the

performance of each can be controlled for the other in experiments

(Elmagarmid et al., 2007). In the last decade, in particular, both blocking and

similarity have become increasingly complex. It is the norm, rather than the

exception, to publish either on blocking or on similarity in an individual

publication (Christen, 2012b). Despite some potential disadvantages, this

methodology has resulted in the adoption of well-defined evaluation metrics

for both blocking and similarity.

Evaluating Blocking

The primary goal of blocking is to scale the naïve one-step instance

matcher that bilaterally pairs all entities with each other. Blocking

accomplishes this goal by generating a smaller candidate set. If complexity

reduction were the only goal, blocking could simply generate the empty set

and obtain optimal performance. Such a blocking system would be useless

because it would generate a candidate set with zero duplicates coverage.

Thus, duplicates coverage and candidate set reduction are the two

goals that every blocker seeks to optimize (Hernández & Stolfo, 1995). To

formalize these measures, let Ω be denoted as the set ܦଵ×ܦଶ; in other words,

the exhaustive set of all bilateral pairs. Let Ωெ denote the subset of Ω that

contains all (and only) matching entity pairs. Ωெ is designated as the ground-

truth (equivalently, gold standard). As in previous sections, let ܥ denote the

candidate set generated by blocking. Using this notation, Reduction Ratio (RR)

is defined below: ܴܴ = ͳ − |C||Ω| ሺʹ.ͳሻ
The higher the Reduction Ratio, the higher the complexity reduction

achieved by blocking, relative to the exhaustive set (Christen, 2012b). Less

commonly, RR can also be evaluated relative to the candidate set of a baseline

blocking method (Papadakis et al., 2013). Note that, since RR has quadratic

dependence, even small differences in RR can have an enormous impact in

34

terms of run-time. For example, if Ω contains 100 million pairs27, and System

1 achieves an RR of 99.7%, while System 2 achieves 99.5%, their candidate

sets would differ by 200,000 pairs.

In a similar vein, coverage, or Pairs Completeness (PC), is defined

below: ܲܥ = |C ת Ωெ||Ωெ| ሺʹ.ʹሻ

Note that Pairs Completeness gives an upper bound on the recall

metric that is used for evaluating overall duplicates coverage in the similarity

step, as described in the subsequent section. For example, if PC is only 80%,

meaning that 20% of the duplicate pairs did not get included in the candidate

set, then recall on the full instance matching task will never exceed 80%.

There is typically a tradeoff between achieving high PC and RR. The

tradeoff is achieved by tuning a relevant parameter28. There are two ways to

represent this tradeoff. The first is a single-point estimate of the F-Measure,

or harmonic mean, between a given PC and RR: ܨ − ݁ݎݑݏܽ݁ܯ = ܥܴܴܲ×ܥܲ×ʹ + ܴܴ ሺʹ.͵ሻ

A single-point estimate is only useful when it is not feasible to run the

blocker for multiple parameter values. Otherwise, a more visual representation

of the tradeoff can be achieved by plotting a curve of PC vs. RR for different

values of the parameters.

Another tradeoff metric, Pairs Quality (PQ), is less commonly used

than the F-Measure of PC and RR: ܲܳ = |C ת Ωெ||C| ሺʹ.Ͷሻ

Superficially, PQ seems to be a better measure of the tradeoff between

PC and RR than the F-Measure estimate, which weighs RR and PC equally,

despite the quadratic dependence of the former. In this vein, PQ has been

described as a precision metric for blocking (Christen, 2012b). Intuitively, a

27 By Linked Data standards, this is not an unreasonable number. It is easily achieved if both datasets

contained 10,000 entities each.

28 For example, the sliding window parameter ݓ in Sorted Neighborhood (presented earlier in Section

2.2.1) can be increased to achieve higher PC, at the cost of lower RR (Hernández & Stolfo, 1995).

35

high PQ indicates that the generated blocks (and by virtue, the candidate set ܥ) are dense in duplicate pairs.

In practice, PQ gives estimates that are difficult to interpret, and can

be misleading. For example, suppose there were 1000 duplicates in the

ground-truth, and ܥ only contained 10 pairs, of which 8 represent duplicates.

PQ, in this case, would be 80%. Assuming that the exhaustive set is large

enough that RR is close to 100%, the F-Measure would still be less than 2%

(since PC is less than 1%). The F-Measure result would be correctly

interpreted as an indication that, for practical purposes, the blocking process

has failed. The result indicated by PQ alone is clearly misleading, suggesting

that, as a tradeoff measure, PQ should not29 be substituted for the F-Measure

of PC and RR. An alternative, proposed by at least one author but not used

widely, is to compute and report the F-Measure of PQ and PC (Christen,

2012b).

Evaluating Similarity

Given a candidate set ܥ, the similarity step uses a link specification

function to partition ܥ into sets ܥ� and ܥே� of duplicates and non-duplicates

respectively. The two metrics predominantly used for evaluating the similarity

step, and by virtue, instance matching as a whole, are precision and recall: ܲ݊݋݅ݏ݅ܿ݁ݎ = |C� ת Ωெ||C�| ሺʹ.ͷሻ

 ܴ݈݈݁ܿܽ = |C� |Ω�||Ωெ ת ሺʹ.͸ሻ

In other words, precision is the ratio of true positives to the sum of

true positives and false positives, while recall is the ratio of true positives to

the sum of true positives and false negatives. Similar to PC and RR defined

earlier, there is a tradeoff between achieving high values for precision and

recall. An F-Measure estimate can again be defined for a single-point estimate,

but a better, more visual, interpretation is achieved by plotting a curve of

precision vs. recall for multiple parameter values.

29 This is not to say that PQ is not useful in its alternative interpretation as a precision measure. Even that

interpretation is not without its problems: the true precision of an instance matcher is determined by the

similarity step, not by blocking, which is only relevant as a computational preprocessing step.

36

Note that, since similarity is defined as a binary classification problem

in the machine learning interpretation of instance matching, other measures

such as accuracy can also be defined. One reason why they are not considered

in the instance matching literature is because they also evaluate performance

on the negative (i.e. non-duplicates) class, which is not of interest in instance

matching (Elmagarmid et al., 2007). An alternative to a precision-recall curve

is Receiver Operating Characteristic (ROC), which plots true positives

against false positives (Hanley & McNeil, 1982). Historically, and currently,

precision-recall curves dominate ROC curves in the instance matching

community (Menestrina, Whang & Garcia-Molina, 2010; Köpcke & Rahm,

2010; Köpcke, Thor & Rahm, 2010). In keeping with existing trends in the

literature, precision-recall curves are favored over ROC curves for similarity

evaluations in this dissertation.

2.3 Heterogeneity

In Section 2.2, structural homogeneity was explicitly assumed. The

two implications of this assumption were that (1) entities in the two sources

were compatibly typed30, and that (2) the property schemas for the compatible

types in question were identical in both sources. This section explores

violations of these implications, and extends the basic model in Figure 2.2 to

accommodate type and property heterogeneity.

 2.3.1 Type Heterogeneity

Violation of the implication that all entities must have compatible

types leads directly to the notion of type heterogeneity, namely, the presence

of multiple types in the input RDF graphs.

In RDF graphs, type information is often published using a special

property, denoted : in this section. Formally, let a type declaration triple ݁݌ݕݐ

be denoted as a triple that has the form ሺݐ݆ܾܿ݁ݑݏ, ∶ ,݁݌ݕݐ ,is a URI denoting a semantic type (equivalently, class or concept) (Ma ݐ݆ܾܿ݁݋ ሻ, whereݐ݆ܾܿ݁݋

30 It is incorrect to denote the entities as having the ‘same’ type. Two types can be compatible without
being equivalent, as will be subsequently illustrated.

37

Tran & Bicer, 2013). Visually, any edge with the label : represents a ,݁݌ݕݐ

type declaration triple in an RDF graph fragment.

Example 2.6: In Figure 2.9a, an example31 of a type declaration triple

is ሺ݀ͳ: ,݊ܽݓܵ_ℎ݌݁ݏ݋ܬ ∶ ,݁݌ݕݐ ݀ͳ: :ሻ. We denote the type ݀ͳݎ݋ݐ݊݁ݒ݊ܫ :as containing the instance ݀ͳ ݎ݋ݐ݊݁ݒ݊ܫ :similarly, ݀ͳ ;݊ܽݓܵ_ℎ݌݁ݏ݋ܬ :is said to have type ݀ͳ ݊ܽݓܵ_ℎ݌݁ݏ݋ܬ in a ݐ݆ܾܿ݁ݑݏ When the .ݎ݋ݐ݊݁ݒ݊ܫ

type declaration triple is itself a type, it is said to be a sub-type of the ݐ݆ܾܿ݁݋,

which, by definition, must be a type; similarly, the ݐ݆ܾܿ݁݋ is said to be a super-

type of the ݐ݆ܾܿ݁ݑݏ. In Figure 2.9a, for example, ݀ͳ: is a super-type ݊݋ݏݎ݁ܲ

of ݀ͳ: .ݎ݋ݐ݊݁ݒ݊ܫ

Figure 2.9: Two RDF graph fragments illustrating type heterogeneity. The dashed lines

represent an alignment between semantically related (i.e. compatible) types.

The dashed lines between types in Figure 2.9 illustrate a type

alignment, or a correspondence between semantically related types in two

different datasets. Two entities, ݁௜ and ௝݁, from the two datasets, are said to be

compatibly typed iff there exists an alignment between two types, ݐ௔ and ݐ௕,

such that ݁௜ and ௝݁ have types ݐ௔ and ݐ௕ respectively32.

In principle, type alignment is similar to blocking in that it seeks to

avoid wasted comparisons ‘for free’. Considering Figure 2.9, common sense

31 It is a common misconception that Thomas Alva Edison ‘invented’ the incandescent lightbulb, in part,

perhaps, due to a misleading advertising campaign known to have been launched by Edison’s company at
the time it was first patented and marketed in America.

32 Note that an instance can have multiple types (e.g. Joseph Swan has two types in Figure 2.9a). A

single alignment is sufficient for compatibility.

38

would indicate that it is futile comparing appliances (such as lightbulbs) to

people in the hope of locating :sameAs links. Intuitively, a good type

alignment algorithm addresses type heterogeneity by producing an alignment

that maximizes the efficiency of overall instance matching (by restricting

further processing to compatibly typed instances) but without sacrificing

coverage of equivalent instances. This intuition will be formalized in Chapter

4.

In the Linked Data and Semantic Web communities, the problem of

type alignment is related, but not identical, to the larger ontology matching

problem (Euzenat & Shvaiko, 2007). Ontology matching only aligns two

types if there is a well-defined relationship between them. In the literature,

three such relationships that have been investigated most often are

subsumption, disjointness and equivalence (Euzenat & Shvaiko, 2007).

Subsumption implies that one type is a sub-type of the other, disjointness

implies that the types do not overlap in terms of their instances, and -

equivalence implies that both types are (semantically) identical. This last

relationship has the same semantics as the :sameAs links in instance

matching33.

As Figure 2.9 illustrates, type alignments often do not have such well-

defined semantics. For example, the only relationship between ݀ͳ: ݎ݋ݐ݊݁ݒ݊ܫ

and ݀ʹ: is that they contain overlapping instances. At the same ݎ݁݁݊݅݃݊ܧ

time, the types ݀ͳ: :ʹ݀ and ݊݋ݏݎ݁ܲ have well-defined semantics ݎ݁݁݊݅݃݊ܧ

(subsumption), but are not aligned. Given the data in Figure 2.9, aligning ݀ͳ: :ʹ݀ and ݊݋ݏݎ݁ܲ would not be useful, since the equivalent ݎ݁݁݊݅݃݊ܧ

mentions of Joseph Swan have already been covered by the alignment

between ݀ ͳ: ݀ and ݎ݋ݐ݊݁ݒ݊ܫ ʹ: ,This ties directly into the intuition .ݎ݁݁݊݅݃݊ܧ

earlier presented, that type alignment is more similar to blocking than to

ontology matching.

The observations and intuitions noted above suggest that a good type

alignment algorithm should be data-driven (like blocking), rather than

semantics-driven (unlike ontology matching). This notion is revisited in

Chapter 4, where a data-driven type alignment algorithm is presented and

evaluated.

33 For precisely this reason, many ontology matching researchers have also applied their innovations to

instance matching (Euzenat & Shvaiko, 2007). Some notable examples are reviewed in Section 3.1.4.

39

2.3.2 Property Heterogeneity

Once the types are aligned, property heterogeneity34 arises within

each pair of aligned types. If the RDF graphs are represented as logical

property tables, the problem bears a resemblance to schema matching in the

Relational Database community (Rahm & Bernstein, 2001). Columns in one

table need to be matched (possibly many-many) to columns in another table.

An influential survey of schema matching was provided by Bellahsene,

Bonifati and Rahm (2011). Similar to instance matching, machine learning

methods have been successfully applied to schema matching in the previous

decade (Bellahsene et al., 2011).

In the instance matching context, it is more appropriate to denote the

matching process as property alignment rather than schema matching. One

reason is that the property schema is only an abstraction for the purposes of

data serialization. As earlier described, a formal RDF schema is defined by an

extended vocabulary such as OWL or RDFS (McGuinness & Harmelen, 2004;

Allemang & Hendler, 2011). A second reason is that, similar to type

alignment, property alignment also relies on semantic relatedness to match

properties. Indeed, many of the arguments presented about type alignment in

the previous section also apply to property alignment. A successful property

aligner is inherently data-driven, as detailed in Chapter 6, and should not

assume standard semantics of subsumption or equivalence.

34 Property alignment is the second sub-problem within ontology matching. Relationships previously

mentioned in the context of type alignment (equivalence, disjointness and subsumption) are similarly

applicable to property alignment (Euzenat & Shvaiko, 2007).

40

Figure 2.10: An illustration of property alignment between the property schemas of two

compatible types in two datasets. The two compatible types, which could be Executive and Businessman,

for example, are assumed to have been aligned by a type alignment procedure. Because the datasets are

independent, the data values describing the entity Michael Rogers differ slightly.

Figure 2.10 illustrates a property alignment between two property

schemas35. Visually, the alignment is represented through bi-directional

dashed lines between edge labels. The alignment between the properties ݀ͳ: :ʹ݀ and ݊݋݅ݐܽ݌ݑܿܿ݋ shows that an algorithm cannot rely ݊݋݅ݏݏ݂݁݋ݎ݌

solely on string matching. The alignment between the address properties

shows that matches may occur in a many-one (and potentially, many-many)

fashion. Collectively, these observations indicate that feasible property

alignment should be robust, and is qualitatively more fine-grained than type

alignment.

A computational motivation for property alignment can also be stated.

As described in Section 2.2.2 (and illustrated in Figure 2.7), a machine

learning-based similarity function would first convert an entity pair into a

35 By the description in Section 2.1.3, the two datasets in Figure 2.8 have property schemas {݀ͳ: ܽ݃݁, ݀ͳ: ,݊݋݅ݐܽ݌ݑܿܿ݋ ݀ͳ: :ʹ݀} and {ݏݏ݁ݎ݀݀ܽ ܽ݃݁, ݀ʹ: ,݊݋݅ݏݏ݂݁݋ݎ݌ ݀ʹ: ,ݕݐ݅ܿ_ݏݏ݁ݎ݀݀ܽ ݀ʹ: .respectively {݌݅ݖ_ݏݏ݁ݎ݀݀ܽ

41

numeric feature vector using a library of ݉ feature functions. In Section 2.2.2,

structural homogeneity was assumed, meaning that the property alignment is

trivial (and one-one). Given ݊ properties, the feature vector for any pair of

entities would have exactly ݉݊ elements.

Suppose, instead, that the two datasets exhibited property

heterogeneity, with their respective property schemas containing ݊ଵ and ݊ଶ

properties each. To convert a bilateral pair of entities into a feature vector, a

naïve feature generator (operating without the benefit of property alignment)

would be forced to apply the ݉ feature functions to every pair of properties,

leading to a vector with ݉݊ଵ݊ଶ elements. In most real-world datasets, the

actual number of aligned property pairs would be small compared to ݊ଵ݊ଶ. In

Figure 2.10, for example, ݊ଵ݊ଶ = ͳʹ, but the number of property alignments

(i.e. the number of dashed lines) is only 4. Even with a library of only 10

feature functions, the dimensionality of each feature vector is reduced from

120 to only 40. Computationally, this would benefit any machine learning

classifier that is being trained on those feature vectors36.

Given its qualitative and computational benefits, a good property

alignment module is clearly an important component of a heterogeneous

instance matching pipeline. Chapter 6 details the property alignment module

developed for the purpose of this dissertation.

2.3.3 Extending the Two-Step Workflow

To conclude this section, the basic two-step workflow in Figure 2.2

can be extended to account for structural (i.e. type and property) heterogeneity

by including type and property alignment modules in the workflow. These

modules output sets of alignments that are then used in the blocking and

similarity steps.

36 There could also be potential qualitative benefits, since the exhaustive property alignment (of size ݊ଵ݊ଶ) would likely generate many irrelevant features, impeding machine learning generalization.

42

Figure 2.11: A possible extension of the basic two-step instance matching workflow. The inner

dashed box is for illustrative purposes only. It is theoretically possible to reorder some of the components

and obtain other versions of the extension (see text).

Figure 2.11 illustrates one possible extension of the workflow in

Figure 2.2. Multi-type RDF graphs are input to a type alignment module,

which outputs a set ܶ of aligned types. For each such aligned pair, compatibly-

typed entities are input37 to both the property alignment module, as well as the

blocking method. Using the property alignment ܲ, a learner (e.g. a machine

learning algorithm) or a domain-expert would output blocking keys38 and a

link specification function. At this point, the standard two-step workflow is

executed (the dashed box in Figure 2.11), and the :sameAs links (between the

compatibly-typed entities) are collected. In general, the outer box must be

executed for each aligned type, highlighting the computational importance of

having a good type alignment (discussed further in Chapter 4). The final

output of the system is a union of all the sets of :sameAs links output by the

individual executions.

37 Graph-theoretically, these are subgraphs of the two multi-type graphs originally input to the system.
38 Since the datasets are structurally heterogeneous, a blocking key can be defined for each input dataset

(Section 2.2.1). In contrast, there is only one link specification function, since each entity pair is

converted to a single numeric feature vector.

43

Note that this is not a definitive extension; other possible workflows

can also be constructed. For example, if an instance-based blocking method

(e.g. Canopies) is assumed, the learner in Figure 2.11 would only output a link

specification function, and the blocking step (now completely schema-free)

may be executed in parallel39 with the property alignment module. The

implementation of these modules is also unspecified, and would depend on

the assumptions and use-cases of the overall system. In Chapter 3, various

possibilities are discussed, based on a review of the literature; Chapter 1

illustrated and briefly described the schematic of the system developed in this

dissertation.

2.4 Scalability

Preceding sections did not specify the actual implementation of the

(basic or extended) model. Traditionally, instance matchers have been

implemented and evaluated on serial machines (Elmagarmid et al., 2007;

Christen, 2012a). Recent years have witnessed a surge in parallel and

distributed instance matching research (reviewed in Chapter 3). In the next

section, the motivation for a scalable instance matcher is first discussed,

following which, the MapReduce paradigm, used for scaling the system

developed in this dissertation, is reviewed.

2.4.1 Motivation

Given that the primary application of this dissertation is data

integration in the Linked Open Data ecosystem, it is prudent to discuss the

motivation behind scaling instance matching for such an application. This is

because, at first glance, it is not obvious that scaling is even required for

processing the largest datasets on Linked Open Data.

For the sake of discussion, let a dataset be putatively denoted as being

small-scale if it contains 100,000 entities or fewer, medium-scale if it contains

between 100,000 and 5 million entities, and large-scale otherwise. The

numbers of types and properties are assumed to be non-trivial but still small

39 A more extreme possibility is that both blocking and similarity are instance-based, in which case,

property alignment, but not type alignment, can be safely eliminated from the workflow in Figure 2.11.

44

compared to the number of entities. In Freebase40, for example, which is

currently the world’s largest known (and downloadable) encyclopedic

knowledge base, the total number of types was found to be well within 5000,

the number of properties (per type) to be in the hundreds (sometimes, tens),

and the number of English entities to be in the millions. The English versions

of the knowledge bases, DBpedia41, Wikidata42 and Yago43, which are some

of the most highly connected on Linked Open Data, are only medium-scale

per the putative definition above (Suchanek, Abiteboul & Senellart, 2011).

Other datasets (e.g. the New York Times44) contain far fewer entities; more

generally, at the tail-end of the distribution, there are numerous small-scale

datasets on Linked Open Data. Concerning domain-specific test cases, some

of the largest datasets on Linked Open Data arise in the bioinformatics

domain, but popular datasets (e.g. the Gene Ontology45 dataset) still tend to

fall within the medium-scale category.

Figure 2.12: An illustration of two-step instance matching from a complexity-theoretic

perspective. RR and PC stand for Reduction Ratio and Pairs Completeness respectively, and were described

in Section 2.2.3. Ωெ is the ground-truth set of duplicate entity pairs (equivalently, the set of true positives).

One could make the argument that scalability should not be a major

concern for such medium-scale datasets46. To refute such an argument,

consider Figure 2.12, which illustrates the two-step instance matching

40 http://www.freebase.com/
41 http://dbpedia.org/services-resources/datasets/data-set-38/data-set-statistics

42 https://www.wikidata.org/wiki/Wikidata:Statistics/Wikipedia

43 http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-
naga/yago/statistics/
44 http://data.nytimes.com/

45 http://www.ittc.ku.edu/chenlab/goal/stats.php. According to the latest statistics, the total number of
annotated gene products (molecular functions, biological processes and cellular components) in the Gene

Ontology still fall short of 3 million.

46 Historically, scalability was never the first priority in the vast majority of instance matching research.

In 2013, Getoor and Machanavajjhala published an influential paper motivating a scalable version of the

problem (Getoor & Machanavajjhala, 2013). Since then, the scope of scalable instance matching research

has continued to expand.

45

workflow from a complexity-theoretic perspective. The inputs to the system

are two RDF graphs containing ݉ and ݊ entities respectively. Problems of

scale tend to emerge because of the intermediate output (the candidate set),

which can easily be in the billions, as the example below illustrates.

Example 2.7: Consider two medium-scale inputs containing

1,000,000 entities each, and a state-of-the-art blocking method that is able to

achieve a reduction ratio of 99.9%. The exhaustive set contains 1 trillion entity

pairs, while the candidate set contains 1 billion entity pairs. Each of these 1

billion pairs must be converted to a feature vector and evaluated by a similarity

function. Thus, even with extremely high reduction ratios, medium-scale

inputs lead to large-scale instance matching applications.

In summary, the current state of Linked Open Data, which already

contains many medium-scale datasets and continues to grow

(Schmachtenberg et al., 2014), motivates research in scalable instance

matching. In Chapter 8, scalability is revisited.

2.4.2 Implementation

Scalable systems may be implemented either on a customized

architecture, or in a popular (typically open-source) parallel paradigm.

Examples of the latter include the Message Passing Interface (MPI) and

MapReduce (Gropp, Lusk, Doss & Skjellum, 1996; Dean & Ghemawat,

2008). Of these, the MPI paradigm is used widely in the supercomputing

community for tasks that require high amounts of data sharing (e.g. large-scale

matrix computations). In the instance matching, and other, communities,

where computations can be distributed in a shared-nothing setting, the

MapReduce paradigm has emerged as dominant (Kolb, Thor & Rahm, 2012b).

A full treatment of MapReduce may be found in the work by Dean and

Ghemawat (2008); for the sake of completeness, Appendix A contains a brief

description.

The MapReduce model has found excellent support in the cloud, at

the time of writing, with all major vendors offering elastic MapReduce

services. Both proprietary (e.g. Google MapReduce) and open-source versions

(e.g. Hadoop) of MapReduce are available (Dean & Ghemawat, 2008; White,

2012). More powerful (e.g. in-memory) variants of the basic MapReduce

46

model continue to be proposed, an influential example being Spark (Zaharia,

Chowdhury, Franklin, Shenker & Stoica, 2010).

The scope of the thesis, in the context of scalability, is limited to the

basic MapReduce model, with alternate implementations (e.g. in Spark) left

for future work.

47

Chapter 3: Related Work

The goal of this chapter is to provide an overview of related work

from the lens of the DASH requirements (domain-independence, automation,

scalability and heterogeneity). This goal is pursued in the following way. First,

Section 3.1 details influential domain-independent instance matchers that also

non-trivially meet at least one of the other DASH requirements. In Section

3.2, these observations are synthesized, and some generalizations are derived.

A takeaway from the discussion in Section 3.2 is that simultaneously meeting

all four DASH requirements is conceptually problematic for many of the

candidate systems.

3.1 Existing Domain-Independent Systems

At a broad level, most instance matchers can be divided into domain-

independent systems and domain-specific systems (Ferraram, Nikolov &

Scharffe, 2013). For example, the RKB co-reference resolution system uses

resource equivalence lists that must be compiled in an ad-hoc fashion for each

dataset (Jaffri, Glaser & Millard, 2008). Another example is GNAT, which is

specifically designed for the music domain (Raimond, Sutton & Sandler,

2008). Another domain that has recently been of much interest is education

(Dietze et al., 2013). It would not be misleading to portray record linkage, a

version of instance matching in the tabular domain, as originally being a

domain-specific application. In the earliest work that we are aware of, record

linkage was specifically applied to the problem of obtaining reliable family

statistics (Newcombe, Kennedy, Axford & James, 1959). The use of linkage

techniques on census datasets was also a major motivation in the 1990s

(Winkler, 1993; 1999).

48

System Automation Scalability Heterogeneity

Winkler’s Expectation
Maximization (Winkler, 1993)

Yes

Hierarchical Graphical Models

(Ravikumar & Cohen, 2004)
Yes

Latent Dirichlet Allocation

(Bhattacharya & Getoor, 2006)
Yes

Christen’s Support Vector
Machine (Christen, 2008b)

Yes

RAVEN (Ngomo, Lehmann, Auer

& Höffman, 2011)
Yes Yes

SERIMI (Araujo, Hidders,

Schwabe & De Vries, 2011)
 Yes

PARIS (Suchanek, Abiteboul &

Senellart, 2011)
 Yes

FEBRL (Christen, 2008a) Yes

Dedoop (Kolb, Thor & Rahm,

2012)
 Yes

Locality Sensitive Hashing

techniques (Kim & Lee, 2010)
 Yes

Transfer learning/schema-free

features (Rong et al., 2012)
Yes Yes

Genetic algorithms (Ngomo &

Lyko, 2012)
Yes

EUCLID (Ngomo & Lyko, 2013) Yes

COALA (Ngomo, Lyko &

Christen, 2013)
Yes

SILK algorithms (Volz, Bizer,

Gaedke & Kobilarov, 2009; Isele,

Jentzsch & Bizer, 2011)

 Yes

LIMES algorithms (Ngomo &

Auer, 2011; Ngomo, 2011)
 Yes

SWOOSH algorithms (Benjelloun

et al., 2009)
 Yes

49

Smart Joins (Vernica, Carey & Li,

2010; Metwally & Faloutsos,

2012; Das Sharma, He &

Chaudhuri, 2014)

 Yes

Chaudhuri, Ganti & Motwani

(2005)
 Yes

Table 3.1: A list of domain-independent instance matchers.

A key element of such systems is that their design process includes

extensive prior knowledge about domain-specific processes. The tradeoff is a

gain in performance on the domain in question. For some applications, such

as census statistics and the medical domain, maximal performance is

desirable, even at the cost of not being able to reuse the system beyond its

intended application. On Linked Data, a flexible approach is prioritized,

owing to the prevalence of numerous domains and stakeholders (Bizer, 2009).

For this reason alone, such systems do not have a documented history of

success in the general Linked Data ecosystem. They are not considered further

in this discussion, as their motivations are tangential to those of this

dissertation.

Much more interest has been generated in domain-independent

systems, especially in recent years47. Some of these systems are listed in Table

3.1, along with an indication of which of the other DASH requirements they

fulfill, and are reviewed subsequently.

3.1.1 Systems Addressing Automation

Since the early 2000s, machine learning has been actively applied to

instance matching (Elmagarmid, Ipeirotis & Verykios, 2007). A machine

learning-based instance matcher could adaptively learn good blocking and

similarity functions from both the labeled training data (for supervised

approaches), and the unlabeled data (for unsupervised, semi-supervised and

clustering-based approaches). On the other hand, instance matchers that use a

47 For the interested reader, accessible surveys and evaluations on much of what is covered in this

chapter are provided by Köpcke et al. (2010), Elmagarmid et al. (2007), Christen (2012a), Winkler (1999)

and Ferrara et al. (2013).

50

fixed set of heuristics on all data sources are non-adaptive, and by any

pragmatic definition, the issue of automation trivially does not arise.

One of the earliest examples of an adaptive instance matcher,

proposed by Winkler (1993), uses a variant of the Expectation Maximization

(EM) algorithm (Dempster, Laird & Rubin, 1977). The Fellegi-Sunter model

of record linkage is assumed (Fellegi & Sunter, 1969). In this model, candidate

entity pairs are partitioned into three classes (matches, non-matches and

possible matches) using two decision thresholds. The class of possible

matches includes entity pairs that are too ambiguous for the similarity function

to resolve into a match or non-match class. Such pairs require clerical review.

A Bayesian argument shows that using two decision thresholds is optimal in

the sense of minimizing possible matches for preset Type I and II error rates

(Fellegi & Sunter, 1969).

Unfortunately, Winkler (2002) stipulated that the EM algorithm can

only be successfully applied to instance matching if at least five empirical

conditions are met. Elmagarmid et al. (2007) succinctly list these conditions,

some of which are problematic for Linked Data. One such assumption is

conditional independence of features. Another is that the match class is well-

separated from the non-match class. In Chapter 7, EM is considered as a

baseline, and the empirical performance is confirmed to be less than ideal on

a Linked Data test suite where many of these conditions are arguably not met.

 Ravikumar and Cohen (2004) use similar, but more robust, ideas by

proposing hierarchical graphical models as a way of modeling the similarity

of features through latent variables. The system is unsupervised, but assumes

structural homogeneity and a serial architecture. A distance function48 is also

assumed to be provided. Empirically, the scope of the work was limited to

Relational Database deduplication applications.

On a similar note, Bhattacharya and Getoor (2006) use Latent

Dirichlet Allocation (LDA) for modeling latent commonalities between

entities (Blei, Ng & Jordan, 2003). The main application of their work is in

collective classification. A classic example arises in the co-authorship domain.

Given a set of bibliographic works, two authors (on two independent works)

are likely to be the same individual if they have similar co-authors. By

modeling such relational information through latent variables, pairs of

48 In the paper, Soft-TFIDF was used as the distance function (Ravikumar & Cohen, 2004).

51

individuals can be collectively disambiguated. While promising, the work has

not been shown to be applicable to domains where relational issues don’t arise.
Similar to the work by Ravikumar and Cohen (2004), structural homogeneity

and serial execution were both assumed in the original paper (Bhattacharya &

Getoor, 2006).

Christen (2008b) adopts a different approach. First, a strong weight-

based heuristic is used to sample training examples that are almost certainly

matches or non-matches. Intuitively, the feature weights in such examples are

nearly all 1.0 for matches (or 0.0 for non-matches). The method is predicated

on locating such extreme-weighted samples to bootstrap the training process.

Weights are assumed to only provide positive information, and features are

assumed to be relatively independent. A classifier (SVM) is trained on the

samples and used to label other feature vectors in the candidate set.

The method, along with other viable classifiers, a synthetic data

generator and a user interface, is available in the FEBRL toolkit (Christen,

2008a). FEBRL was originally designed for biomedical record linkage, but

can be applied to other domains. Heterogeneity is a major issue, since FEBRL

is designed for structurally homogeneous applications. Empirically, only

small benchmarks were used for actual evaluations.

Systems based on active learning have also been proposed, two good

examples being RAVEN and COALA (Ngomo et al., 2011; 2013). Such

systems do not require as many training examples as fully supervised systems

such as MARLIN (Bilenko & Mooney, 2003), and deliver competitive

performance. A major disadvantage is scalability, owing to the method being

iterative and requiring continuous user participation. On a positive front,

heterogeneity is less of an issue as these systems, unlike MARLIN, were

designed for explicit Linked Data applications. In particular, RAVEN

accommodates structural heterogeneity by modeling type and property

alignments as an application of the stable marriage problem (Gusfield &

Irving, 1989).

Genetic algorithms have also been extensively explored (Ngomo &

Lyko, 2012), both in supervised and unsupervised versions. The unsupervised

version relies on a measure known as a pseudo F-Measure (PFM). PFMs are

heuristics that aim to approximate the actual F-Measure by analyzing the data,

and are used as fitness functions in the genetic algorithms. A PFM can also be

used to guide the unsupervised learning of a link specification function, as in

52

the deterministic EUCLID algorithm, which uses linear and Boolean

classifiers (Ngomo & Lyko, 2013). Although promising, evaluations have

shown that the correlation between various proposed PFMs and the actual F-

Measure is tenuous (Ngomo & Lyko, 2013). With genetic approaches, the

entire dataset has to be scanned over multiple iterations, and results are non-

deterministic. In the original papers, EUCLID and the genetic algorithms also

did not include solutions for type and property alignments, and were evaluated

on small benchmarks (Ngomo & Lyko, 2012; 2013). Taken together, these

observations indicate that these algorithms may not be suitable for large-scale

Linked Data applications.

A promising solution that requires training data, but that can then be

applied to other datasets with minimal supervision through transfer learning

was proposed by Rong et al. (2012). This solution is also one of the few to

favor both automation and heterogeneity, the latter by virtue of employing

schema-free features. An example of a schema-free technique that was earlier

introduced in Chapter 2 was Canopies (McCallum, Nigam & Ungar, 2000).

Such techniques address heterogeneity in a brute-force fashion, by ignoring

all structural information. In the case of Rong et al. (2012), features are

extracted by jointly considering the information set of all properties (of a

candidate instance pair). For example, a numeric parser is used to extract

numeric information (e.g. dates) present in the properties. A problem with

using such features is that noise can be introduced by extracting irrelevant

information. Also, Rong et al. (2012) do not directly address type

heterogeneity. Finally, while transfer learning has some advantages, it also

degrades occasional performance. Determining when to use transfer learning

is an ongoing area of research (Pan & Yang, 2010).

3.1.2 Systems Addressing Heterogeneity

Linked Data instance matchers are developed explicitly with

heterogeneity in mind. The prevalence of numerous type and property

definitions in Linked Data is well-documented (Schmachtenberg, Bizer &

Paulheim, 2014). However, aligning the properties and types is assumed to be

the responsibility of an ontology matcher that has been invoked a priori

(Euzenat & Shvaiko, 2007). For example, the EUCLID algorithm explicitly

invokes a property aligner, but the actual alignment algorithm is neither

provided, nor is its performance or the contingent effects of wrong alignments

53

on subsequent instance matching, evaluated (Ngomo & Lyko, 2007). This is

similar to an assumption often made in the record linkage community, where

a schema matcher is assumed to have been invoked prior to the linkage itself

(Hernández & Stolfo, 1998; Elmagarmid et al., 2007).

An important point is that, traditionally, property heterogeneity has

received far greater attention in the instance matching community than type

heterogeneity. The term structural heterogeneity, as used originally by

Elmagarmid et al. (2007), did not include type heterogeneity. Schema

matching systems have also placed more emphasis on aligning properties and

columns (in the case of tabular databases) than on aligning types (Bilke

&Naumann, 2005; Bellahsene, Bonifati & Rahm, 2011). In Table 3.1, a liberal

definition of heterogeneity was adopted, and any system that addressed

property heterogeneity was designated as fulfilling the heterogeneity

requirement49.

A notable exception is the RAVEN system (Ngomo et al., 2011),

earlier described as an active learning-based instance matcher, which aligns

types and properties by using a stable marriage sub-module (Gusfield &

Irving, 1989). From an empirical perspective, the sub-module was not

evaluated against schema matching systems such as Dumas, which have

shown reasonably good performance on noisy test cases (Bilke & Naumann,

2005). The benchmarks used for evaluating RAVEN did not exhibit high

heterogeneity. Thus, while RAVEN addresses heterogeneity in principle, it

prioritizes automation through its active learning-based methodology. The

scalability of the method on RDF data that does not fit in main memory is also

not evident.

PARIS, proposed by Suchanek et al. (2011), performs heterogeneous

instance matching within the framework of ontology matching50. PARIS is

not adaptive, and models the instance matching problem probabilistically. The

framework is iterative, requiring fixpoint computations for the model

equations. Although evaluated on reasonably large datasets, the setup was

49 In addition to erring on the side of caution, this decision is also justified on the grounds that type

alignment, being an ‘easy’ problem, can almost always be included as an independent preprocessing
module without significantly modifying the remainder of the system (Figure 2.11).
50 The authors describe the framework as holistic, since Paris outputs alignments between instances,

properties and types, much like RAVEN and the system developed in this dissertation (Suchanek et al.,

2011).

54

serial and the authors made no claims about scaling the system to larger

datasets, or a distributed implementation.

Finally, the SERIMI system (Araujo et al., 2011) addresses

heterogeneity in a manner similar to Rong et al. (2012), namely, by

considering schema-free techniques rather than actual alignment. SERIMI is

not an adaptive system, and relies on a suite of similarity functions and

collective heuristics to locate similar entities. It was also not implemented in

a distributed, shared-nothing setting. It fulfills neither the automation nor

scalability requirement.

3.1.3 Systems Addressing Scalability

There has been increased interest in scalable systems over the last five

years, especially in the Semantic Web. The algorithms implemented in the

SILK architecture, for example, can be processed efficiently over SPARQL

endpoints over RDF Web data sources (Volz et al., 2009), as can algorithms

implemented in the LIMES framework (Ngomo, 2011). In evaluations,

LIMES was found to be much faster than SILK (Ngomo, 2011). The

architectures are customized and are not implemented in a standard shared-

nothing paradigm. Another disadvantage of both SILK and LIMES is that they

require link specification functions to be explicitly specified. The systems are

non-adaptive and do not fulfill the automation requirement. LIMES, in

addition, requires the specification function to obey metric properties in order

to execute efficiently.

More theoretical work includes the influential Swoosh algorithms, D-

Swoosh and P-Swoosh, which are parallel and distributed versions of the

original Swoosh algorithms (Benjelloun et al., 2009). These algorithms have

some impressive theoretical properties, but similar to LIMES, require the

specification function to obey some strong constraints. In particular, it is not

evident that these constraints are obeyed by general-purpose machine learning

classifiers, limiting the applicability of Swoosh. Swoosh does not contain

direct provisions for addressing heterogeneity. The parallel architecture is

customized, and cannot be elastically deployed in the cloud.

 Locality Sensitive Hashing (LSH) has also emerged as a popular

technique for implementing distance functions in a scalable fashion (Kim &

Lee, 2010). An accessible introduction to LSH for the nearest-neighbors

55

problem is provided by Datar, Immorlica, Indyk and Mirrokni (2004). In the

Semantic Web, LSH techniques for the Jaccard and a version of the Cosine

distance function were first used by Duan et al. (2012) for ontology matching.

LSH can accommodate heterogeneity by ignoring structure and treating

instances as bag of tokens. An adaptive version of LSH (by using hashes as

features and then employing Expectation Maximization) is considered as an

unsupervised baseline in Chapter 7.

 The Dedoop framework allows users a way to specify an instance

matching workflow and efficiently execute it in MapReduce by using load

balancing techniques (Kolb et al., 2012). There is a significant manual

component involved. To the best of our knowledge, Dedoop is the only system

that provides an end-to-end MapReduce-based instance matcher.

 In earlier, but still influential, work by Chaudhuri et al. (2005), a

scalable distance-based instance matching (referred to by the authors as fuzzy

duplicates identification) system was implemented for Relational Databases

using Microsoft SQL Server as backend infrastructure. Near-linear scalability

was demonstrated for Relational datasets containing up to three million

entities.

There are also examples where an architecture is purportedly scalable

but has been evaluated only on small datasets or in simulated execution

environments. For example, the D-Swoosh system was evaluated on datasets

that had between 5,000-50,000 entities and the evaluations were conducted on

emulated distributed environments (Benjelloun et al., 2007). FEBRL, earlier

mentioned in the context of automation, was implemented using the Message

Passing Interface (MPI) but only evaluated on small datasets on a single

compute node (Christen, 2008a). Another system, proposed by Kirsten et al.

(2010), was slightly more ambitious, and conducted evaluations on a match

task of 114,000 entities. By Linked Data standards, this is quite small; the

DBpedia dataset alone contains slightly over 3 million entities (Auer et al.,

2007). The system also relies on the manual specification of a workflow, not

unlike Dedoop, and the architecture is not shared-nothing (Kirsten et al.,

2010). In contrast, the system developed in this dissertation is evaluated on

datasets containing between 50,000 to 1.5 million entities (Chapter 8).

 In other related work, smart joins implemented scalably in

MapReduce have received enormous attention in the database literature

(Vernica et al., 2010; Metwally & Faloutsos, 2012; Das Sharma et al., 2014).

56

A smart join algorithm assumes a set similarity function, typically with a

threshold. The goal is to return all pairs of records that satisfy the thresholded

similarity condition. Technically, this is different from the instance matching

problem where the function is unknown (even to a human being) and has to

be approximated. Thus, the smart join algorithms represent a different extreme

where automation is explicitly disregarded and heterogeneity is

accommodated only through the specification, but where strong scalability

guarantees are available.

3.1.4 Other Systems

There are other systems that have delivered impressive performance

and are used in a variety of contexts, but that are not discussed here (and are

not listed in Table 3.1). The main reason is that these systems are either

domain-specific or are schema-based51. Earlier, a brief discussion on, and

some examples of, domain-specific instance matchers were provided. In this

section, the discussion is restricted to schema-based systems.

Schema-based systems tend also to be rule-based (Leonardi et al.,

2010). Many approaches were originally proposed as ontology matchers.

Examples include RiMOM, LogMap, Asmov and ObjectCoref (Li, Tang, Li

& Luo, 2009; Jiménez-Ruiz & Grau, 2011; Jean-Mary, Shironoshita &

Kabuka, 2010; Hu, Qu & Sun, 2011). New systems continue to be proposed

each year as part of the annual Ontology Alignment Evaluation Initiative52

(Ferrara, Nikolov, Noessner & Scharffe, 2013). Another recent system, based

on rule-mining, relied on the existence of inverse functional properties to learn

good rules using a variant of the EM algorithm (Niu, Rong, Wang & Yu,

2012). The authors of that work proposed the system as a ‘third choice’
between a domain-specific and domain-independent system, since the rules

were dataset-specific and required multiple EM iterations. Two other

examples of Semantic Web data matchers that rely either on the specification

of an ontology or a user workflow are KnoFuss and RDF-AI (Nikolov, Uren,

Motta & De Roeck, 2008; Scharffe, Liu & Zhou, 2009).

51 A schema-based instance matcher is primarily characterized by its reliance on a declared ontology or

schema.

52 http://oaei.ontologymatching.org/

57

While the performance of all these systems is impressive in the

presence of ontologies and metadata, the larger part of the Linked Data

ecosystem is known to contain only shallow meta-data (Schmachtenberg et

al., 2014). Thus, such systems are better suited to more constrained Semantic

Web applications, rather than Linked Data applications.

3.2 Discussion

The previous section listed existing systems, and their strengths and

limitations. The goal of this section is to generalize the findings discussed in

the previous section, and to note potential additions to a subset of described

systems that could help fulfill the DASH requirements. Could the automated

systems in Table 3.1, for instance, be re-implemented in a scalable way that

allows them to address type and property heterogeneity? What are the barriers

to such adaptations?

3.2.1 Automation vs. Scalability

A cursory scan of Table 3.1 shows that there is a dichotomy between

domain-independent systems that fulfill the automation requirement and those

that fulfill the scalability requirement. This is unlikely to be a coincidence. In

particular, scalable systems tend to make strong assumptions. Locality

Sensitive Hashing techniques, for example, assume that appropriate hashing

families exist for the distance functions being approximated (Datar et al.,

2004). In the instance matching (and also ontology matching) literature, the

only functions for which LSH has been appropriately utilized are Jaccard and

a version of the Cosine distance function (Duan et al., 2012). An extension to

LSH techniques to accommodate the properties of machine learning classifiers

is by no means straightforward. Another example of an architecture amenable

to parallel and distributed algorithms, Swoosh, also imposes strong

assumptions on the similarity function (Benjelloun et al., 2009).

It is also interesting to note that instance matchers implemented in a

shared-nothing paradigm, such as MapReduce, tend to leave the burden of

specification on the user. Dedoop, for example, requires the user to completely

specify the workflow (Kolb et al., 2012). The same is true for LIMES and

SILK (Ngomo, 2011; Volz et al., 2009), which are not implemented in

58

MapReduce, but require the user to specify the appropriate functions and

parameters. Smart joins, for reasons discussed earlier, are considered

conceptually disjoint from instance matching.

It is also possible to survey this issue from the opposite end of the

spectrum. Automated systems, which mainly tend to be EM-based algorithms

that iteratively refine a likelihood function by learning good parameters for

latent variables, require multiple scans over the dataset, copious amounts of

data sharing and an unspecified number of iterations before convergence

(Ravikumar & Cohen, 2004; Bhattacharya & Getoor, 2006). In general, they

are non-deterministic and may require multiple re-starts to avoid the pitfalls

of local optima. As Winkler (1993) observed, various empirical conditions

have to hold for such algorithms to be viable. Recent progress on this last issue

has been promising but is not a settled matter at the time of writing (Rong et

al., 2012).

A promising approach that is potentially amenable to a fixed number

of approximately linear-time MapReduce jobs is the SVM-based proposal by

Christen (2008b). In its present form, the proposal accommodates neither

scalability nor heterogeneity. The latter problem can be dealt with, as

described in the following section. It is less obvious how the system can

automatically and scalably locate good seed examples to bootstrap the training

process. Christen makes the assumption that seeds can be unambiguously

located by seeking feature vectors with weights that are nearly all 0 or 1. With

noisy data, this is almost never guaranteed. In empirical findings described in

later chapters, feature vectors are often found to be sparse, even for

duplicates53. If seeds can be located from such data using a fixed number of

MapReduce jobs, automation and scalability requirements can be reconciled.

A road map for this is provided in both Chapters 5 and 8. Once located, seeds

can be used, in principle, for learning multiple functions.

3.2.2 Issues of Structural Heterogeneity

A traditional assumption in the instance matching community is that

datasets have been homogenized prior to executing an instance matching

workflow (Köpcke, Thor & Rahm, 2010). For this assumption to be validated,

53 The principal reason for this is another DASH requirement, namely domain-independence. Domain-

independence requires adopting a ‘broad’ feature-set, which results in sparsity on any one test set.

59

ontology matching must be performed a priori (Elmagarmid et al., 2007;

Christen, 2012a; Ferrara et al., 2013b).

This assumption would not be problematic if ontology matching were

a solved problem. In fact, research on them has been ongoing for many

decades (Rahm & Bernstein, 2001; Euzenat & Shvaiko, 2007). In some cases,

schema matching systems assume that instance matching has been solved a

priori (Bilke & Naumann, 2005)54. The argument is that, despite the progress

in both instance matching and schema matching, it is misleading to assume

that either problem has been solved perfectly.

The question is largely empirical. Is it sufficient to use classic,

relatively simple, approaches to address type and property heterogeneity in

the broader context of instance matching? In Chapters 4 and 6, it is shown that

while type heterogeneity is amenable to classic approaches, property

heterogeneity is not. Insofar as the related work is concerned, only the

RAVEN system properly55 deals with heterogeneity, although empirical

evaluations on this issue are limited (Ngomo et al., 2011). Other systems, like

the one by Rong et al. (2012), address heterogeneity by using schema-free

features that ignore structural properties altogether. An empirical argument

against such approaches, for well-structured RDF graphs, is provided in

Chapter 7.

Structural heterogeneity also impacts automation. In Chapter 1

(Section 1.3), one possibility mentioned for addressing automation was the

use of distant supervision. Wikipedia, for example, can be used to acquire

‘supervision’ in named entity disambiguation applications (Cucerzan, 2007).

It is not unreasonable to propose a similar utility for DBpedia (or a similar

graph), which is structured using Wikipedia infoboxes.

Structural heterogeneity impedes this issue because, when input two

data sources, a system would have to first find compatible types and properties

between DBpedia and the two inputs to guide supervision56. Property

heterogeneity presents a particularly formidable challenge owing to the

schema-free nature of even well-curated Linked Data (such as DBpedia), as at

least one recent study has shown (Arenas, Díaz, Fokoue, Kementsietsidis &

Srinivas, 2014). Scale is also a barrier. Small data sources, which would

54 The Dumas schema matcher, used as a baseline in Chapter 6, uses duplicates to match columns.

55 That is, addresses heterogeneity through alignments, as opposed to ignoring structure.

56 We take it for granted that such types and properties exist.

60

normally require only serial processing, would now have to accommodate

large, noisy and dynamic knowledge bases in the pipeline. In such scenarios,

a self-contained solution is clearly more desirable.

In an instance matcher, the problem of structural heterogeneity is

overcome by prepending alignment modules to the basic two-step workflow

detailed in Chapter 2. In later chapters, viable alignment solutions are

presented and evaluated. Recent progress on the structural heterogeneity issue

has been promising, especially in the context of blocking (Papadakis, Ioannou,

Palpanas, Niederée & Nejdl, 2013).

3.2.3 Issues of Unsupervised Blocking

Many of the systems earlier described had a strong focus on the

similarity step of instance matching. An unfortunate consequence of the

complexity of recent instance matching research is that researchers often

ignore other aspects of instance matching, such as blocking, in their exclusive

focus on similarity or scalability. For example, both Ravikumar and Cohen

(2004), and Bhattacharya and Getoor (2006) use simple ad-hoc blocking keys

in their experiments57. Scalable systems make more extreme assumptions. For

example, Dedoop require both blocking and similarity steps to be precisely

specified by a user as part of a workflow (Kolb et al., 2012).

Evaluations in Chapter 7 show that traditional techniques such as

Canopies may not work well on heterogeneous RDF datasets (McCallum et

al., 2000). In the Semantic Web, an unsupervised blocking scheme learner, by

Song and Heflin (2011), was evaluated on small datasets and is not as

expressive as DNF blocking schemes. In real-world instance matching,

unsupervised blocking should not be assumed away, since it is still unsolved.

57 For example, all records sharing a 4-gram character sequence were placed in the same block

(Ravikumar & Cohen, 2004).

61

Chapter 4: Type Alignment

Type alignment is the first line of attack against structural

heterogeneity. Relatively simple heuristics, executed in an unsupervised

fashion, turn out to be adequate for solving this problem on real-world

datasets. This chapter covers the type alignment module developed for the

dissertation (Kejriwal & Miranker, 2014). Although we do not consider this

module as constituting a core contribution in support of this dissertation, we

detail it on account of its importance as the very first step in the pipeline in

Figure 1.5.

4.1 Motivating Example and Preliminaries: A

Review

In Chapter 2, type alignment was introduced as an extension to the

basic two-step instance matching workflow. A type was defined in the context

of a type declaration triple of the form ሺ݁݊ݕݐ݅ݐ, ∶ ,݁݌ݕݐ ሻ. Namely, the݁݌ݕݐ

special property : ݕݐ݅ݐ݊݁ .݁݌ݕݐ has type ݕݐ݅ݐ݊݁ is used to indicate that ݁݌ݕݐ

itself could be a type, in which case it has super-type ݁݌ݕݐ. A type hierarchy

can be constructed in this way.

The sub-type and super-type relationships are examples of

containment and subsumption respectively. Equivalence imposes a stronger

condition. Using standard set semantics and notation, a type ܣ is equivalent to

another type ܤ if ܣ is both a super-type and sub-type of ܤ. In a similar manner,

disjointness can be defined.

In many ontology matching applications, the primary goal is to

discover equivalence and containment relationships (Euzenat & Shvaiko,

2007). In instance matching, this goal is insufficient, and sometimes,

unnecessary (Nikolov, Uren, Motta & De Roeck, 2009).

The running example in Figure 4.1 illustrates why type alignment is

different from ontology matching, and motivates the development of a type

alignment algorithm that is appropriate for an instance matching pipeline. In

Figure 4.1, there are examples of type pairs not being aligned despite having

well-defined semantics (e.g. freebase:non-profit is a sub-type of

62

dbpedia:Company); at the same time, one of the aligned pairs,

(dbpedia:Inventor, freebase:Entrepreneur), does not have well-defined

semantics. Although rare in practical data integration applications, there is

also no restriction on a type in one dataset being aligned with multiple types

in the other dataset (Section 4.2).

Given sets of types58 ܶ and ܵ from two input RDF graphs, a type

alignment Θ is a subset of the Cartesian product ܶ ×ܵ, such that each pair in

the type alignment comprises semantically related types. Type alignment has

implications for both scalability and coverage, making it similar to blocking.

An intuitive explanation for the implication that type alignment

affects both scalability and coverage can be stated. Let a bilateral entity pair ሺ݁ଵ, ݁ଶሻ be denoted as being covered by a type alignment Θ iff there exists a

pair ሺݐ, ሻݏ א Θ such that ݁ଵ and ݁ଶ have types ݐ and ݏ respectively. Because ݁ଵ and ݁ଶ could be covered by multiple type pairs, the inclusion of all

semantically related type pairs in Θ may not be beneficial. An example of a

semantically related, but non-beneficial59, type pair in Figure 4.1 is

(dbpedia:Person, freebase:Entrepreneur). A natural tradeoff between

scalability and coverage is observed in terms of the type pairs included in Θ.

For this reason, at least one paper refers to an instance matcher using both type

alignment and standard blocking as employing a blocking-within-blocking

strategy (Ma & Bicer, 2013).

58 Technically, these sets are extracted by scanning the type declaration triples.
59 This claim is accompanied by the caveat that, similar to blocking, the true benefit of type alignment

must necessarily be proven through its empirical impact on the coverage and scalability of the overall

instance matching problem (Section 4.4).

63

 Figure 4.1: The running example, illustrating the motivation behind type alignment.

An ideal type alignment system would take as input the two input graphs and output the dashed red lines

shown in the figure. Note that, despite the visual similarity to :sameAs properties, these lines do not

represent actual property declarations; hence, are unlabeled.

4.2 Applications of Type Alignment

The primary dissertation motivation is to populate a Linked Data

Entity Name System for data integration. It is natural to question the extent

of type heterogeneity in data sources common in domain-independent data

64

integration applications. Typically, heterogeneity in the data integration

literature is assumed to mean property (or schema) heterogeneity, addressed a

priori through a good ontology matcher (Elmagarmid, Ipeirotis & Verykios,

2007). In Chapter 3, when discussing which systems fulfilled heterogeneity

requirements, explicit property alignment was considered to be the de facto

criterion. The main reason for this, discussed at length in Chapter 2 and

revisited in Chapter 6, is that property alignment is a finer-grained problem,

known to affect both quality and scalability (Nikolov et al., 2009).

Two type alignment applications seem predominant in real-world

Linked Data. The first application arises when each RDF graph input is

actually a collection of graphs, none of which are interlinked. Each individual

subgraph in the collection forms an undirected connected component, with a

common type declaration linking all entities within the subgraph. The types

are arranged in a flat hierarchy; hence, the types are not interlinked.

Strong evidence of this first application is found in government data,

which has become a major contributor to Linked Open Data since the advent

of the Open Government movement (Shadbolt et al., 2012). For example, in

the United States, the Joint Committee on Taxation and the US Treasury both

release data on budgetary and fiscal allocations annually. The schemas

employed by both sources are different but stay homogeneous within each

organization, undergoing minor changes every few years. Given a collection

of annually released datasets over a period of several years, a type alignment

system would match the files according to year. Some years may be missing

in one of the directories; hence, the mapping may not cover all files. A good

algorithm would detect the importance of numbers (especially dates) in

performing the mapping, since the files are otherwise too similar. This

application is used as a test case in Section 4.4.

A good analogy for the first application is to consider an input graph

as a directory, and single-type subgraphs as files in the directory60. Given two

such directories, the problem of type alignment is limited to finding a mapping

between individual files. Some files may not have any corresponding matches,

but if a match exists, it is typically one-one. The intuitive reason is that if two

files, ܣଵ and ܣଶ, in one directory match a file ܤ in another directory, ܣଵ and ܣଶ are strongly related, a fact that is missing from the input. Although this is

60 This is more than a convenient analogy. In the real-world cases that were collected for evaluations, the

datasets were physically structured in this manner.

65

not a rigorous reason for anticipating a one-one mapping between two

collections, real-world data tends to conform to it. To conclude the argument,

if ܣଵ and ܣଶ are indeed strongly related, the first collection needs to undergo

cleansing or deduplication before it can be correctly linked to another

collection.

The first application is relatively trivial if the files belong to different

domains. In such cases, there is much less scope for discovering false-positive

mappings. If a DNF blocking scheme is used in the blocking step, the mapping

is implicitly discovered by the DNF blocking scheme learner61, and type

alignment is unnecessary. One of the evaluations in Section 4.4 show that this

is a distinct possibility; it is also relied upon in Chapters 5-7.

Figure 4.2: Abstract depiction of the second type alignment application.

The second type alignment application is unconstrained and arises

when entities across types are interlinked (Figure 4.2). In this scenario, one-

one mappings can no longer be assumed. A further complication arises when,

in the case of many-many alignments, each alignment is not equally important.

This makes the application similar to the problem of determining query-

document relevance in information retrieval (Baeza-Yates & Ribeiro-Neto,

61 Functionally, a conjunction (or some disjunction of conjunctions) is learned for each domain, and

absorbed into a larger DNF expression (returned as the final blocking scheme). Because the domains are

different from each other, the conjunctions don’t interfere, making the process indistinguishable from the

one where a DNF blocking scheme is independently learned for each aligned type pair.

66

1999). For each type in one of the graphs, a ranked list of types in the second

graph must be obtained.

While the first application is of direct concern to data integration, the

second is only of tangential concern. One reason is that the second application

arises mainly in the context of encyclopedic datasets such as DBpedia and

Freebase. Although encyclopedic datasets are instrumental to the success of

Linked Data (Bizer, 2009), often serving as a hub for connecting myriad

datasets from different domains, their scope is too broad for them to serve as

primary sources in a data integration application62. The focus in this chapter

is on the first application, but the second application is relevant for type

alignment scalability evaluations in Chapter 8.

It is reasonable to assume that type declaration triples are typically

available for a given data source. Such an assumption must necessarily be

based on a systematic analysis of published Linked Data. Tran and Bicer

(2013) found that fewer than 10% of entities in the datasets under

consideration in their work63 lacked type information. While this is not a small

number in terms of the absolute numbers of entities and triples involved,

several approaches exist for deriving the missing type information. Tran and

Bicer (2013) proposed a typification algorithm, which discovers latent type

information through clustering. A simpler approach is to declare non-typed

entities to have special type other. This approach is not unlike smoothing

techniques applied in language models, which provide for rare words absent

from the data used to derive model parameters (Zhai & Lafferty, 2001).

4.3 Approach

Given the nature of the type alignment problem and the preference for

a data-driven algorithm, amenable to scaling in MapReduce, a heuristics-

based approach is hypothesized to be an appropriate candidate. Some

precedence for such approaches in the ontology matching domain already

exists (Euzenat & Shvaiko, 2007), but are less favored than approaches based

62 Other anecdotal problems for not using encyclopedic datasets as primary data integration sources are

quality, and the lack of control, since these datasets are themselves derived (e.g. from Wikipedia).
63 The considered datasets were mainly encyclopedic, suggesting that the missing type problem is more

likely to occur in the second type alignment application. In the test cases gathered for the module in this

dissertation, the problem was not encountered.

67

on structural features and logic. The drawbacks of schema-based approaches

for the current problem were explained in Chapters 2 and 3.

Input: Two multi-type RDF graphs ܩଵ and ܩଶ with type sets ଵܶ and ଶܶ

respectively

Output: Type Alignment Θ

Steps:

1. Initialize empty type matrix ܯ of dimension | ଵܶ|×| ଶܶ|
2. Use similarity function ܵ to populate ܯ

3. Apply pair selection strategy ܲ on ܯ to obtain set Θ ⊆ ଵܶ× ଶܶ

4. Output Θ

Algorithm 4.1: An abstract algorithm for type alignment.

The pseudocode of an abstract algorithm is provided in Algorithm 4.1.

The abstraction emerges from the similarity function and pair selection

strategy, which are yet unspecified. Otherwise, algorithm execution is

straightforward. First, the similarity function ܵ: ଵܶ× ଶܶ → [Ͳ,ͳ] is used to

populate a type matrix ܯ, such that each element in the matrix represents a

similarity score between two types. The pair selection strategy ܲ: ܯ →ଵܶ× ଶܶ derives the type alignment from the type matrix, and outputs it. In the

present treatment, more complex scenarios (e.g. probabilistic type alignments)

are not considered, as evaluations show such fine-grained distinctions to be

unnecessary.

4.3.1 Possible Strategy Implementations

This section discusses possible implementations for the similarity

function and pair selection strategy. The discussion is brief, and by no means

exhaustive. The preference is for simple, robust approaches that can be

employed by way of third-party black-box implementations. Though hard to

objectively quantify, the use of transparent, openly available packages prove

to be important assets in Linked Open Data domains.

68

Similarity function

A similarity function (within the context of Algorithm 4.1) is defined

as a function that takes a pair of types (one from each graph) and returns a real

value in the range of [0,1]. A similarity function is heavily influenced by the

choice of argument representation. A good representation of a type is a type

document, defined as a bag (or multi-set) of string tokens representing the

information set of the type. In the literature, one suggested way of constructing

a type document is to perform a multi-set union on the labels of all entities

that have that type (Duan et al., 2012). This strategy is likely to fail if entity

labels are opaque URIs (i.e. having syntactic relevance only) or are otherwise

not indicative. The real-world encyclopedic graph, Freebase, falls within this

category, but other cases also exist. In our work, the definition of a type

document was extended to include both entity labels and also all ݐ݆ܾܿ݁݋

strings that occur in a triple of the form ሺݐ݆ܾܿ݁ݑݏ, ,ݕݐݎ݁݌݋ݎ݌ ሻ suchݐ݆ܾܿ݁݋

that ݐ݆ܾܿ݁ݑݏ is an entity having the type in question (Kejriwal & Miranker,

2014). Note that object may be a data value or a URI. The distinction is not

made in the construction of the type document. An advantage of constructing

the document in this way is that it is robust to large numbers of opaque strings,

and the construction is scalable (Chapter 8).

Once constructed, any set similarity function can be applied to a pair

of type documents. A distinction is made between local similarity functions

that depend only on the two arguments, and global functions that require an

additional information set, typically derived by collectively processing all

documents. Local functions have an important scalability advantage over

global functions, as they are far easier to handle in shared-nothing distributed

settings. In serial settings, there is no particular advantage.

An example of a local set similarity function is the Jaccard similarity

function that, for two bags (equivalently, type documents) ܵ ଵ and ܵ ଶ, is defined

as the ratio of the cardinality of the multi-set intersection of the bags and the

cardinality of their multi-set union (Christen, 2012a): ݀ݎܽܿܿܽܬሺܵଵ, ܵଶሻ = ܵଵ ת ܵଶܵଵ ׫ ܵଶ ሺͶ.ͳሻ

69

An example of a global similarity function is Cosine similarity

between (appropriately normalized) TFIDF64 weight vectors: ݁݊݅ݏ݋ܥሺܵଵ, ܵଶሻ = ∑ ,ሺܵଵݓ ,ሺܵଶݓሻݍ ௌమתௌభא ሻ௤ݍ ሺͶ.ʹሻ
 A type document is ‘cast’ as a TFIDF weight vector by assigning a

weight to each unique term in the domain. The weight depends on both the

term frequency (TF) and the inverse document frequency (IDF). TF is given

by the frequency of the term in the given document, while IDF is the inverse

of the number of documents that the term appears in at least once. Specific

formulae for computing TF-IDF weights will be provided in the next chapter,

where they also play a significant role.

Computing IDF statistics requires the entire document collection to

be scanned, making the similarity function global. A local version is also

possible, if the IDF term is ignored and the term frequency vectors are

appropriately normalized65.

There are other reasons that, beyond locality, make ignoring IDF a

good decision for this problem domain (Kejriwal & Miranker, 2014). One

reason is that tokens in noisy entities may lead to undue noise in the IDF term.

A possible way to address this problem is to divide the token weight in each

vector by its total occurrence (in entities of all types) in the corresponding type

document collection. This vertical normalization was found to work well in

pilot serial experiments. Cosine similarity between vertically normalized TF

vectors is still global, as the full collection must be scanned, but helps to

compensate for IDF noise in small type document collections.

Pair selection strategy

Using a set similarity function, a type matrix can be populated, with

each element in the matrix representing the similarity between two types. A

pair selection strategy processes this matrix to output a potential type

alignment. An obvious strategy for selecting an injective mapping to

maximize the total sum of similarity scores is the max. Hungarian algorithm

64 Term Frequency-Inverse Document Frequency. The version of the TFIDF formula herein is primarily
derived from the work by Cohen (2000).

65 An example normalization (denoted herein as an L2-normalization) is dividing each weight by the

square root of the summed squares of all weights in the vector.

70

(Munkres, 1957). Among other applications, this algorithm has also been used

for obtaining schema mappings from analogously defined similarity matrices

(Bilke & Naumann, 2005). If | ଵܶ| = | ଶܶ| = ݊, the Hungarian algorithm runs

in time ܱሺ݊ଷሻ; a similar result is obtained for unequal dimensions.

A more aggressive pair selection strategy, denoted Greedy, only picks

elements that are the maximum in both their constituent row and column. This

algorithm runs in linear time in the total number of type pairs (ܱሺ| ଵܶ|| ଶܶ|ሻ). It

is aggressive because it prioritizes the precision of type alignment over the

recall. In evaluations (Section 4.4), this strategy was found to effectively

discover one-one mappings in instantaneous execution time66.

An intuition is provided on the scaling of Algorithm 4.1. Assuming

that the number of types in either graph is not large67, linear-time MapReduce

jobs can be used to execute the similarity function on type document pairs and

output the type matrix. The matrix, being small, can be shuffled to a single

reducer, where the pair selection strategy is executed, and a type alignment is

output (Chapter 8).

4.4 Evaluations

4.4.1 Test Cases

Table 4.1 describes the test cases used in these evaluations. All test

cases are real-world and structurally heterogeneous.

66 Another intuitive strategy that also scales better than the Hungarian algorithm and is able to handle
many-many mappings is a threshold-based strategy, which chooses any mapping that is above a pre-

specified threshold. Along similar lines, a ranking-based strategy can also be defined. Threshold and

ranking-based strategies prove important in Chapter 8, where the second type alignment application is
evaluated in a large-scale setting.

67 A justification of this, based on analysis of encyclopedic graphs that are known to contain large

numbers of types, is given in Chapter 8.

71

Table 4.1: Test cases used in type alignment evaluations.

For a given country, Case Law consists of data that describe legal

cases in that country. The Constitute datasets are derived from the Constitute

project68, and provide structured descriptions of a country’s constitutions. In
the tests considered here, only one of the Constitute datasets provided to the

system should be linked to the corresponding Case Law dataset. The goal is

to link cases in Case Law to the relevant articles in Constitute that were used

in deciding that case. Such linkage problems are often referred to as link

discovery, rather than instance matching, since the link may not necessarily

have :sameAs semantics (Figure 4.2). The principles of non-adaptive link

discovery systems are similar to those of non-adaptive instance matchers69.

The third collection is more complex, and describes estimated US

government budget data from 2009 to 2013. The data is provided

independently by the Joint Committee on Taxation and the US Treasury. Data

from a longer period may be found on a publicly accessible website70. The

goal is to link budgetary allocations in the two sources that share the same

function (e.g. health) in the same year. This test case also involves link

discovery.

All datasets contain a wide variety of non-string data, such as numbers

and dates (Figure 4.3). For this reason, they serve as good serial benchmarks

68 https://www.constituteproject.org/

69 Even when a component in such a system is adaptive, the difference arises if the system is also
unsupervised. If manually labeled data is provided, the semantics of links have no bearing on statistical

algorithms trained to detect them.

70 http://www.pewstates.org/research/reports/

72

for evaluating the first application of type alignment on real-world Linked

Data.

Figure 4.3: Example of link between (Colombia) Case Law and Constitute.

4.4.2 Metrics and Methodology

Within an instance matching application, a type alignment is

successful if it leads to efficiency savings without a corresponding loss in

effectiveness. A correct way to evaluate this is by using an underlying blocking

algorithm as the baseline, and using the blocking metrics of Pairs

Completeness (PC) and Reduction Ratio (RR) to respectively measure

effectiveness and efficiency71. Namely, the blocking method is first executed

on the two collections as if they were singly-typed graphs. A graph of PC vs.

RR is plotted by varying blocking method parameters, described earlier in

Chapter 2. Next, type alignment is performed on the collections and the same

blocking method is executed on the instances covered by the type alignment.

A graph of PC vs. RR is analogously plotted for this set.

Two blocking methods are considered to ensure that the assessment

is generalizable. The first is the unsupervised Canopies (equivalently, Canopy

Clustering or CC) method by McCallum, Nigam and Ungar (2000). The

second is the extended (or heterogeneous) version of the supervised

homogeneous Disjunctive Normal Form blocking scheme learner (DNF-BSL)

briefly described in Chapter 2. The extended version is detailed in Chapter 7.

The actual working of the blocking methods (and parameterization) is not

71 Formulae for these metrics may be found in Section 2.2.3.

73

relevant for these evaluations72, since (a) the parameters are varied over a

range in order to generate a comprehensive PC-RR graph, and (b) tight

controls are kept in place by ensuring that the only difference between the two

blocking implementations is that one implementation includes type alignment

as a preprocessing module, and the other does not.

Relatively simple methods are used for type alignment. Cosine

similarity on vertically normalized TF vectors is used for the similarity

function, and the Greedy method is used for the pair selection strategy. Note

that the evaluations in this chapter are limited to a serial setting, where all

datasets fit in main memory. The experiments were run on an Intel Core 2 Duo

PC with 3 GB of memory and 2.4 GHz clock speed. All code was implemented

in Java, and is freely available on the author’s Github page73.

4.4.3 Results and Discussion

Figure 4.4 illustrates the results on all three test cases. The

heterogeneous DNF blocking scheme learner outperforms Canopies in all

cases, but this is expected, since Canopies is unsupervised and explicitly

attuned to the instance matching (rather than the generic link discovery) task.

The DNF-BSL is trained on the links and is able to adapt to generic link

discovery. The improvement does not represent a controlled result in the sense

of one blocking method being universally better than the other.

The results indicate that type alignment, even with simple measures,

significantly improves upon both blocking methods. There is one scenario

when DNF blocking, by itself, seems to be sufficient. On the Venezuela test

case, there is virtually no difference between the heterogeneous DNF-BSL

baseline, and the method that employs type alignment. Thus, the success of

type alignment must be interpreted with a caveat. Given enough training data,

an adaptive DNF-BSL is able to compensate for type heterogeneity by virtue

of searching in an expressive hypothesis space74. If this is not the case,

72 The issue was treated at length in the original publication (in Section 4.4; pg. 9). Briefly, block

purging was used to control data skew in Canopies, and a fixed-size training set (300 positives and 300
negatives), along with a training method based on bootstrap aggregating, was used to train the DNF-BSL

(Kejriwal & Miranker, 2014).

73 https://github.com/mayankkejriwal
74 The presumed reason for this adaptiveness occurring with Venezuela but not Colombia is that the

relative proportion of training data was higher for Venezuela than Colombia, by virtue of fewer positive

links in Venezuela (Table 4.1).

74

explicitly addressing type heterogeneity is in the best interest of a system

designer.

Figure 4.4: Comparison of blocking techniques Canopy Clustering (CC) and Heterogeneous

Blocking (Hetero), with and without type alignment (TA). The relevant metrics are Reduction Ratio (RR)

and Pairs Completeness (PC). For readability purposes, legend colors for Venezuela differ from the other

two datasets.

A post-hoc analysis of the results showed that the alignments were

putatively correct. As mentioned before, type alignment cannot rely on a

human-annotated gold standard, as aligned types must exhibit semantic

relatedness, only quantifiable by data-driven metrics (PC and RR in Figure

4.4). However, the test cases in these experiments have fairly standard

semantics (on type alignment) and algorithm results agreed with putative

judgments.

In auxiliary experiments, the benefits of type alignment, when interest

is limited to only one type, are also evaluated. In the government finances test

case, for example, it is likely that only matched instances from the most recent

year are of interest. If type alignment is not performed, the only avenue is the

baseline approach, followed by some manually defined filtering approach

after the instance matcher terminates.

75

The benefit of type alignment is evaluated as follows. A candidate set

is generated only for the type of interest75, but the exhaustive set in the RR

definition is the set of all entity pairs, regardless of type. Arguably, this is the

correct way of evaluating type alignment for the scenario outlined above, since

the baseline does not consider types at all. For comparison, a second, stricter

definition of RR is also considered. Per this definition, the exhaustive set is

the set of all entity pairs only for that type. One reason why this definition is

useful is that, because PC and RR are always normalized to be between 0 and

1, a direct comparison is facilitated between the PC-RR tradeoffs of multi-

type blocking and single-type blocking. A key research question here is

whether type alignment has distributional implications for the PC-RR

tradeoff76.

Figure 4.5: Results of auxiliary experiments for Canopy Clustering and the heterogeneous

DNF-BSL (Heteroblocking) for the single type 2009 in the US government test case.

Figure 4.5 illustrates the results for the auxiliary experiment. Local

RR uses the stricter definition of the exhaustive definition, while actual RR

uses the first (and argued to be the correct) definition. The results show that,

when the interest is bound to a single type, the benefits of type alignment are

even greater. Concerning the aforementioned research question, distributional

changes are minimal. For Canopy Clustering, the trends and slopes are similar.

For the heterogeneous DNF-BSL, the similarity is less evident, especially near

high PC values, but the trends become more similar for lower PC values. Note

also that, although a comparison of trends between the actual RR scenario and

75 Recall that, in the first experiment, a union was performed on the candidate sets generated for the type
alignment as a whole.

76 Another way of putting this is, ‘does type alignment change the shape of the PC-RR curve for an

adopted blocking method?’

76

the baseline (or the local RR scenario) is inapplicable, since entities from other

types are completely ignored in the RR, the shapes of all curves are still quite

similar, an encouraging sign that type alignment does not have unexpected

impact on candidate set distribution.

Auxiliary experiments were also conducted for the other years in the

US government test case, as well as for the Colombia and Venezuela test

cases. The results were qualitatively similar and are not reproduced herein.

77

Chapter 5: Training Set Generation

Automation is one of the four goals in populating a Linked Data Entity

Name System. In Chapter 3, it was shown that standard unsupervised

techniques, such as iterative full-pass genetic algorithms and clustering

algorithms, are often forced to assume away scalability (and in some cases,

property heterogeneity) to function.

An approach by Christen (2008b) suggested an alternate approach,

namely that of training set generation. The idea was that, if a good seed

training set can be located through an appropriate set of assumptions, then the

set could be used to bootstrap all adaptive processes in the overall instance

matching schematic in Figure 1.5. Unfortunately, the approach developed by

Christen relied on strong assumptions that do not hold in the majority of RDF

test cases evaluated in the present set of experiments. In short, Christen’s
approach is unsupervised but is ill-suited to domain-independent,

heterogeneous graphs. Other training set generators in the literature have also

encountered empirical difficulties when evaluated on heterogeneous RDF

graphs (Section 5.3.4)

The goal of this chapter77 is to present a domain-independent training

set generator (TSG) that is both unsupervised and performs well on RDF graph

inputs. To the best of our knowledge, this is the first such TSG for

heterogeneous graphs that yields outputs that can be viably employed in

support of a full unsupervised execution of the instance matching pipeline in

Figure 1.5. Because the TSG enables fulfilling automation, we consider it as

the first (and primary) core contribution in support of this dissertation78.

The generated training set may be noisy, since the underlying

procedure relies on a set of heuristics and not human labeling effort. Learning

procedures that rely on such training data must necessarily be robust to noise.

Two such procedures, for property alignment (Chapter 6) and blocking key

learning (Chapter 7), constitute the remaining core contributions in support of

this dissertation.

77 Some of the technical material in this chapter was previous published as part of an article in the

Journal of Web Semantics (Kejriwal & Miranker, 2015c).
78 Additionally, a MapReduce-based version of the algorithm is illustrated in Chapter 8, precluding the

tension between automation and scalability that has been typical of other instance matchers (Section

3.2.1).

78

5.1 Intuition

For the purpose of this discussion, consider two people, Michael

Rogers and James Quinlan, that are present in two different datasets d1 and

d2, belong to compatible types (e.g. People and Individual) and must be

declared as being equivalent by a good instance matcher.

Figure 5.1 illustrates the RDF fragments describing the information

sets79 of these two entities. Assuming a set of heuristics that relies solely on

token overlap and is agnostic to all other information, including structure and

property labels, it is evident that such heuristics would output a higher score

when comparing the information sets of Michael Rogers than the information

sets of James Quinlan. For the James Quinlan entities, the zip codes differ by

one, and the city New York (in the d2 information set) has no equivalent phrase

in the d1 information set. The only token that is common, in fact, is Quinlan,

a weak signal that would get ignored by any reasonably robust heuristic. This

example can be made even more extreme by assuming Quinlan was mistyped

as Qinlan in the second dataset. Such misspellings have a pattern (they sound

the same) and are quite common in datasets that involved some form of

manual data entry.

Assuming that the set of heuristics returns the pair of Michael Rogers

entities as a training example, much can be learned from it, and others like it,

in terms of a broad enough fine-grained feature-set that includes numeric,

token, string and phonetic features. For example, initials and tokens (as

opposed to an exact match) are important features in the labels of the entities,

while the occupation is an unreliable indicator. Using other retrieved samples

(not shown in Figure 5.1), a learner might conclude that, in conjunction with

other features, an age is a reliable indicator. Zip codes are important but may

differ by small margins. If Quinlan was misspelled as Qinlan, phonetic

features would be particularly useful. Data-driven procedures can be executed

on these heuristically located samples to reveal alignments between properties

(Chapter 6). With the aid of these alignments and the feature-set mentioned

above, blocking and similarity functions can be learned and executed (Chapter

7). This completes the execution of the pipeline in Figure 1.5.

79 Defined simply as a bag containing tokens (equivalently, ‘words’) that occur both in the entity URI
itself, as well as the tokens in the object values and URIs that are one edge away from the entity.

79

Figure 5.1: An example illustrating the intuition behind the training set generator (TSG)

detailed in this chapter.

In short, the chief observation distilled from Figure 5.1 is that, in real-

world data, not all training samples are equally difficult, and with a robust set

of heuristics, easy samples can be located. In Section 5.2, we describe a

combination of two heuristics that are used to locate such samples. Together,

the two heuristics are found to significantly and consistently outperform a one-

heuristic TSG in experimental evaluations (Section 5.3).

The easy samples generated by the TSG will be used to bootstrap a

more expressive learning procedure (e.g. a machine learning classifier) that

will, in turn, locate more difficult samples80. An important concern that arises

80 There is a strong connection here between semi-supervised learning (and also EM), and the training

set generator (TSG). In semi-supervised learning (Zhu & Goldberg, 2009), a seed labeled set is provided

by a human. The TSG simply tries to automate this initial labeling effort by replacing human effort with

80

here is that the classifier could end up ‘re-learning’ the heuristics that

generated the examples in the first place (and thereby replicate the output of

the TSG in a test phase). This concern is obviated by the use of the fine-

grained feature-set briefly mentioned earlier (and detailed further in Section

7.1.1). Specifically, a change of feature representation ensures that the coarse

heuristics cannot be directly learned by the machine learning classifier, which

in turn, facilitates the discovery of additional ‘harder’ duplicates.

To ensure domain-independence, such features must not be designed

for a specific dataset or domain. In practice, this issue can only be tested

through independent evaluations on several different domains and test cases.

A second important practice that we adopted to ensure domain-independence

was to only use a single development dataset for refining the various

components of the approach presented in Section 5.2. Although this chapter

deals primarily with the design of a robust RDF training set generation

algorithm, it also introduces the multi-domain test suite that will be used again

in Chapters 6 and 7, where the generated training set is used for learning

multiple functions.

5.2 Approach

Input: Property tables ଵܲ and ଶܲ

Parameters ݊ and ݐℎݏ݁ݎℎ

Tokenizer ܶ

Output: Set D of positive training samples

Set N of negative training samples

Steps:

1. Initialize empty list ܦ௟
2. Initialize empty sets ܦ and ܰ

3. Convert each record in ଵܲ and ଶܲ to a bag-of-words document using ܶ to

tokenize each record

heuristics. The reason why an unsupervised version of EM is inappropriate was described in Chapter 3,

and EM will also be used as a baseline in later chapters.

81

4. Collect term frequencies and inverse document frequencies over all

documents

5. Collect all record pairs ሺݎ, ′ܦ ℎ inݏ݁ݎℎݐ ሻ with Log TFIDF score aboveݏ
where א ݎ ଵܲ and א ݏ ଶܲ

6. Compute Jaccard scores of all pairs in ܦ′
7. Sort ܦ′ in descending order based on Jaccard score

8. Place in ܦ the top min ሺ|ܦ′|, ݊ሻ pairs in ܦ′ such that a record occurs at

most once in any pair in ܦ′
9. Permute pairs in ܦ to get ܰ distinct pairs such that |ܰ| = ,|ܦ| ܰ ת is ܦ

non-empty

10. Output D and N

Algorithm 5.1: An algorithm for training set generation.

An effective training set generator (TSG) must overcome at least two

challenges. First, the TSG must yield reasonable results without being too

expensive, otherwise it risks becoming the computational bottleneck in the

full system. In practice, the run-time of an appropriate TSG should be near-

linear, similar to other preprocessing steps such as blocking. The second

challenge is the quality of the generated training set. Since the TSG relies on

heuristics, at least some fraction of the training set is expectedly noisy, and

training set precision falls rapidly as a function of coverage with respect to the

ground-truth. Prior results on TSGs (verified by the results in Section 5.3)

have demonstrated this fall in precision to start occurring at relatively low

levels of coverage (Bilke & Naumann, 2005; Kejriwal & Miranker, 2013).

This means that a high-quality training set risks not being representative

enough, potentially leading to problems such as overfitting when training

classifiers further down the pipeline. Conversely, the more representative the

set, the noisier it is likely to be.

Algorithm 5.1 presents the pseudocode of a serial TSG that was

designed with these two challenges in mind. The TSG tokenizes each record

in a property table using a tokenizer T, and converts it into a bag-of-words

document81. Drawing on standard information retrieval techniques that were

81 Technically different from the type document described in Chapter 4, but the construction is similar.

82

also utilized in Chapter 4 (Cohen, 2000), term frequencies (TF) and inverse

document frequencies (IDF) of tokens are computed.

In preliminary experiments, off-the-shelf tokenizers were found to be

inadequate for the challenges (such as URI prefixes) posed by RDF elements

in Linked Data. Based on these observations, a process of trial-and-error on

an experimental dataset was used to design the tokenizer T used both in

Algorithm 5.1 and in other algorithms developed in this dissertation. The

tokenizer is designed to specifically handle the delimiters often encountered

in URIs and other RDF elements82.

The ݁ݎ݋ܿݏ ܨܦܫܨܶ ݃݋ܮ, defined herein as the Cosine similarity of two

vectors83 ݎ and ݏ, with ܨܦܫܨܶ ݃݋ܮ weights, is given by the formula below: ܨܦܫܨܶ ݃݋ܮሺݎ, ሻݏ = ∑ ,ݎሺݓ ,ݏሺݓሻݍ ௦ ת ௥א ሻ௤ݍ ሺͷ.ͳሻ
For any bag-of-words representation ݐ, and word ݓ :ݍሺݐ, ሻݍ = ,ݐሺ′ݓ ∑√ሻݍ ,ݐሺ′ݓ ௧א ሻଶ௤ݍ ሺͷ.ʹሻ
The function ݓ′ሺݐ, ,ݐሺ′ݓ :ሻ is defined as followsݍ ሻݍ = log(ݐ ௧݂,௤ + ͳ) log ሺ|ܲ|݀ ௤݂ + ͳሻ ሺͷ.͵ሻ

The equations assume that ݎ and ݏ are records from RDF logical

property tables ଵܲ and ଶܲ respectively, ݓሺݐ, ሻ is the L2-normalized TFIDFݍ

weight of a term ݍ in a record ݐ (from either property table), ݐ ௧݂,௤ is the term

frequency of ݍ in ݐ, |ܲ| = | ଵܲ| + | ଶܲ| is the total number of records in both

property tables and ݀ ௤݂ is the number of records in which the term ݍ appears.

Note that IDF statistics are collected over both property tables.

Using the parameter ݐℎݏ݁ݎℎ as a filter, only the pairs with ܨܦܫܨܶ ݃݋ܮ score above ݐℎݏ݁ݎℎ are retained in the list ܦଵ. If ݐℎݏ݁ݎℎ is too

high, there may be fewer than ݊ pairs with score above ݐℎݏ݁ݎℎ. In practice,

setting ݐℎݏ݁ݎℎ to a default low value (such as 0.001) is found to suffice

(Section 5.3). The rationale behind setting a low (but non-zero) ݐℎݏ݁ݎℎ is to

eliminate the vast majority of pairs that share only unimportant tokens (such

82 A specific but simple example is including the delimiter :// in the tokenizer. This delimiter is often

encountered in Web URIs, and serves only a syntactic purpose.
83 In a slight abuse of notation, ݎ and ݏ are also used as symbols for the bag-of-words representation.

83

as http). A default value of ݐℎݏ݁ݎℎ can be set in a self-tuning manner in an

actual implementation; if fewer than ݊ samples are returned, ݐℎݏ݁ݎℎ decreases

by a small value till ݊ samples are returned by Algorithm 5.1.

Efficient implementations of the ܨܦܫܨܶ ݃݋ܮ function have been

extensively researched in the information retrieval community and drawing

on the prior work of Cohen (2000), lines 1-5 of Algorithm 5.1 can be

implemented with guaranteed run-time ܱሺ�ሺ| ଵܲ||Αଵ| + | ଶܲ||Αଶ|ሻሻ where � is

the slow-growth inverse Ackermann function, and Α௜ is the attribute set84 of

property table ௜ܲ (for ݅ = ͳ,ʹ).

The record pairs collected in ܦ′ are scored in line 6 using the

previously described ݀ݎܽܿܿܽܬ set similarity measure, first formally introduced

in Chapter 4. Briefly, given two token-bags ܵଵ and ܵଶ as input, their ݀ݎܽܿܿܽܬ

similarity score is given by: ݀ݎܽܿܿܽܬሺܵଵ, ܵଶሻ = ܵଵ ת ܵଶܵଵ ׫ ܵଶ ሺͷ.Ͷሻ

As described in Chapter 4, a key property of ݀ݎܽܿܿܽܬ is that it is a

local similarity function in that it does not rely on external information sets

(such as IDF) that may require a pass over the entire dataset. Instead, the

dependence is only on the two arguments. Since ܨܦܫܨܶ ݃݋ܮ and ݐℎݏ݁ݎℎ have

already served as a filter for eliminating obvious non-duplicates, ݀ݎܽܿܿܽܬ can

be used to further refine and sort ܦ′. In line 8, the top ݊ (or |ܦ′|, whichever is

smaller) pairs in the sorted list are added to the output set ܦ.

A natural question is if the ݀ݎܽܿܿܽܬ refinement step is even necessary,

given that ܨܦܫܨܶ ݃݋ܮ is roughly accomplishing the same goals. In fact, the

training set generator used by the Dumas schema matcher does not include

this step, but sorts the list based on the ܨܦܫܨܶ ݃݋ܮ scores and outputs the top ݊ results (Bilke & Naumann, 2005). The rationale for including this step is

that ݀ݎܽܿܿܽܬ places higher emphasis on token overlap with respect to the

union of the tokens-sets, and is agnostic to how common the tokens are in the

other records. This aggressive strategy would expectedly lead to many false

positives getting included in ܦ if applied in an unfiltered setting, but ܨܦܫܨܶ ݃݋ܮ has already filtered out non-duplicates with high token overlap.

84 The attribute set (equivalently, property set) of a property table is the set of column labels in the table.
For ease of presentation, the subject column is assumed to be included in this set, even though it is

technically not an RDF property.

84

The empirical benefits of using two heuristics, instead of one, are

demonstrated in Section 5.3.

A constraint in line 8 of Algorithm 5.1 is that a record (from either

property table) occurs at most once in ܦ′. Intuitively, this constraint attempts

to make the training sets as representative as possible by preventing a single

record from getting undue coverage in the training set. This relates directly to

the quality-representation tradeoff earlier mentioned as a challenge in prior

TSG work (Bilke & Naumann, 2005; Kejriwal & Miranker, 2013).

Example 5.1: Suppose ݊ = ͵ and the sorted list at the end of line 7 in

Algorithm 5.1 is ܦ′ = [ሺݎଵ, ,ଷሻݏ ሺݎଶ, ,ହሻݏ ሺݎଵ, ,଻ሻݏ ሺݎ଺, ௝ݏ ௜ andݎ ଵሻ] whereݏ

denote the ݅௧ℎ and ݆௧ℎ records in property tables ଵܲ and ଶܲ respectively. The

chosen positive training set would then be ܦ = {ሺݎଵ, ,ଷሻݏ ሺݎଶ, ,ହሻݏ ሺݎ଺, {ଵሻݏ

since record ݎଵ has already appeared in a higher-scoring pair.

Non-duplicates can be automatically generated by relying on the

observation that real-world datasets are often sparse in duplicates. This

assumption is also predicated by the blocking step, which can only be applied

if the vast majority of pairs are assumed to be non-duplicates (Christen, 2012).

Line 9 in Algorithm 5.1 permutes the pairs in ܦ to obtain new pairs (ב that (ܦ

are assumed to be non-duplicates. For balanced training, |ܰ| = ݊.

Example 5.2: Continuing from the previous example, where ݊ = ͵

and the generated duplicated-set was ܦ = {ሺݎଵ, ,ଷሻݏ ሺݎଶ, ,ହሻݏ ሺݎ଺, ଵሻ}, aݏ

possible non-duplicates set ܰ generated by permuting ܦ is {ሺݎ଺, ,ହሻݏ ሺݎଵ, ,ଵሻݏ ሺݎଶ, .{ଷሻݏ

In practice, such a permutation is found to lead to near-perfect

accuracy on the generated non-duplicates set (Section 5.3). Also, note that

while lines 1-8 of Algorithm 5.1 (and by virtue, ܦ) are deterministic, there are

usually many possibilities for ܰ. An alternative simple option for generating ܰ is to randomly pair records in ଵܲ with records in ଶܲ. One advantage of the

adopted approach is that it is expected to exhibit less randomness, since both

sets ܦ and ܰ are constructed using common records85 and ݊ is expected to be

small compared to dataset sizes. Empirically, both methods were found to

85 The probability of picking a non-duplicate record pair by randomly picking a pair from ଵܲ and ଶܲ is

(assuming duplicates-sparsity) approximately
ଵ|�భ||�మ|, whereas for the adopted approach, it is only of the

order
ଵ௡మ−௡.

85

yield near-perfect (98%+) accuracy, and either may be deployed in a practical

application.

In Chapter 8, the scaling of Algorithm 5.1 is explored. Therein, a

MapReduce-based TSG, with functionality similar to Algorithm 5.1, is

elaborated upon.

5.3 Evaluations

Although the goal of this section is limited to evaluating the heuristic

TSG, the test suite introduced herein is also used for evaluations in subsequent

chapters, and is argued as being crucial for establishing domain-independence.

Considerable space is allocated in Section 5.3.1 to describing the suite. All

serialized datasets, code, experimental results and ground-truth files are

available on a project website86, and on the author’s GitHub page87.

The evaluations in this chapter (and in Chapters 6 and 7) were serially

conducted on a 32-bit Ubuntu virtual machine with 3385 MB of RAM and a

quad-core 2.40 GHz Intel 4700MQ i7 processor. The Student’s t-test for

paired sample means was used for statistical significance purposes, with the

parameter88 � set at 0.01.

5.3.1 Test Suite

The test suite introduced in this section is used for evaluations in this

chapter, as well as Chapters 6 and 7. In total, there are ten test cases in the

suite, each comprising a pair of individually serialized files89 (Table 5.1). In

total, the test cases cover almost twenty types, with six of the ten cases being

multi-type. Many of these test cases are real-world benchmarks that have been

made available through competitions and Semantic Web initiatives such as the

Ontology Alignment Evaluation Initiative90 (OAEI). We introduced three test

cases, Libraries, Parks and Video Game, as benchmark contributions to the

86 https://sites.google.com/a/utexas.edu/mayank-kejriwal/projects/unsupervised-im

87 https://github.com/mayankkejriwal

88 The maximum Type I error rate, given that the null hypothesis of no difference (between means) is
true.

89 Where relevant, / is used in Table 5.1 for distinguishing between the statistics of the two files.

90 http://islab.di.unimi.it/im_oaei_2014/index.html

86

instance matching community in an article that forms the primary published

reference for serial implementations described in this dissertation (Kejriwal

& Miranker, 2015c).

Note that type alignment on the files is not performed in either this

chapter or the next two. The reason is that, in the majority91 of cases, the

instances share the same type information. In other words, the type alignment

problem has already been solved in these test cases, permitting a controlled

evaluation of the other modules.

In keeping with the observation about Linked Open Data being

roughly schema-free, the following descriptions do not distinguish between

object and datatype properties. In the few test cases where separate OWL

ontologies were provided, they were ignored.

Table 5.1: Test cases used in domain-independent evaluations.

91 In the few cases where the type labels were not identical, a cursory structural comparison (e.g.

counting the number of properties) of the singly-typed property tables in each file yielded a trivial type

mapping.

87

Test cases 1, 2 and 3

The first three test cases, Persons 1, Persons 2 and Restaurants were

first released by OAEI in 2010 and are described on the website92 as ‘real
data cases’. In the literature, there is some source of confusion about this, with
at least one paper describing them as synthetic (Ngomo et al., 2013).

Restaurants was originally a tabular dataset and is still widely used to evaluate

record linkage systems93 (Christen, 2008a). Along with describing restaurants

and people (for the Persons test cases), these datasets also contain instances

of type Address.

Test case 4

Eprints-Rexa is another publicly available benchmark in the Semantic

Web community (Stoilos, Simou, Stamou & Kollias, 2006). Eprints94 is a

small dataset containing information about papers produced within the AKT

research project, while Rexa was extracted by the Rexa search server95

constructed at the University of Massachusetts. Both datasets are real-world

and known to contain noise, although Rexa is believed to contain less noise

than Eprints (Stoilos et al., 2006). This dataset is also the most heterogeneous

dataset in terms of properties, since Eprints contains far fewer properties (and

also instances) than Rexa.

Test case 5

Test case 5, IM-Similarity, describes books and was generated from

real-world data using crowdsourcing96. It was released relatively recently

(OAEI 2014), and the actual ground-truth had not been made available at the

time of experimentation. To counter this, a reference alignment was manually

created by using ad-hoc rules. Although the ad-hoc rules were framed to infer

:sameAs links as closely as possible, there is always a possibility that the

92 http://oaei.ontologymatching.org/2010/im/index.html

93 In the record linkage literature, Restaurants is unambiguously considered real-world and not artificial

(Christen, 2012b).
94 eprints.aktors.org

95 www.rexa.info

96 http://islab.di.unimi.it/im_oaei_2014/index.html

88

reference alignment contains noise. It is thus more appropriate to interpret this

task as a link discovery task rather than the more specific instance matching

task. Chapter 4 included a brief discussion on this task. Note also that this test

case contains multilingual property values.

Test cases 6 and 7

Test cases 6 and 7 are over the movies domain and were artificially

generated from real movie data using SWING, which injects controlled

degrees of heterogeneity into an underlying corpus of real-world IIMB movie

instances (Ferrara, Montanelli, Noessner & Stuckenschmidt, 2011). The types

of heterogeneity (value, structural and semantic) were earlier described in a

companion paper (Ferrara, Lorusso, Montanelli &Varese, 2008), and the

datasets were introduced as instance matching OAEI benchmarks in 2010

(along with Persons and Restaurants). Eighty target datasets were generated

by SWING from a common source. These were partitioned into four equal-

sized folders, based on whether they contained only one of the three

heterogeneities above, or all three (denoted as comprehensive heterogeneity

in the OAEI report).

Two pre-generated SWING configurations (folder numbers 59 and 62

in the publicly available files) were randomly picked for the evaluations, with

one containing only semantic heterogeneity (IIMB-059) and the other

containing comprehensive heterogeneity (IIMB-062). Given the schema-free

assumption, IIMB-059 is an interesting test of system performance when

faced purely with semantic heterogeneity.

Test cases 8, 9 and 10

Test case 8 describes US libraries. The first file was from a Point of

Interest (POI) website97 that allows users to upload GPS (Global Positioning

System) data, and the second file was taken from a US government listing of

libraries. Both files were extracted in the CSV (Comma Separated Values)

format and were serialized as RDF property tables by treating each column

name in the CSV file as an attribute.

97 http://www.poi-factory.com/poifiles

89

Test case 9 is similar to test case 8 except it describes national parks

in the United States. Although Libraries is much larger than Parks, both

datasets exhibit similar challenges of schema heterogeneity, since the first file

in both cases contains fewer attributes than the second file. Another challenge

is that, since both cases have files from POI websites, they contain longitude

and latitude information. For many of the matching entity pairs, the values are

not identical, which makes the task challenging for domain-independent

instance matchers (such as the proposed system) that are not specifically

configured for matching geo-locational data instances.

Finally, test case 10 describes video game information. The first file

contains a sampling of video games extracted from DBpedia, while the second

file was extracted as structured data (and converted to RDF triples in a manner

similar to Libraries and Parks) from a reputable charting website98. Similar to

Libraries and Parks, it only contains singly typed instances (Tian, Kejriwal &

Miranker, 2014).

5.3.2 Metrics

Precision, recall and their F-Measure (harmonic mean) were chosen

as the metrics in these evaluations. These metrics were formally defined in

Chapter 2. To recap, precision is the ratio of true positives to the sum of true

positives and false positives, while recall is the ratio of true positives to all

positives in the ground-truth. In terms of a TSG described by either Algorithm

5.1 or a baseline TSG (Section 5.3.3), a curve of precision vs. recall can be

plotted by varying the parameter ݊ or the number of requested duplicates or

non-duplicates. The ground-truth in these experiments is the set of true

positives, the size of which is given in Table 5.1.

5.3.3 Setup

To the best of our knowledge, the Dumas TSG is the only other

current system that automatically detects heuristic duplicates in structurally

heterogeneous datasets (Bilke & Naumann, 2005), and is thus used as the

baseline in this experiment. Dumas uses ܨܦܫܨܶ ݃݋ܮ to locate the desired set

of duplicates, essentially comprising lines 1-5 of Algorithm 5.1. First, the

98 http://www.vgchartz.com

90

precision-recall tradeoff offered by the Dumas TSG is plotted against that of

the re-sorted list output by lines 6-7 of Algorithm 5.1 by using the ݀ݎܽܿܿܽܬ

score. Statistical significance is measured by comparing the F-Measure series

generated by the two systems using the paired t-test for sample means.

Although the curves are plotted by considering a range of values for

the parameter ݊ in Algorithm 5.1, later algorithms depend on a specific value

of ݊, since ݊ is used to tune the quality-representativeness tradeoff of

Algorithm 5.1. Ideally, ݊ should be large enough to adequately represent the

characteristics of the underlying dataset, but not be so large that too many

incorrectly labeled pairs get included in the generated training set. Towards

this end, ݊ was chosen to equal 500 for the second part of the experiment. That

is, the top 500 elements from the re-sorted list are picked as duplicates, such

that no instance is repeated more than once99 (line 8 of Algorithm 5.1). The

chosen duplicates are permuted (line 9 of Algorithm 5.1) to yield 500 non-

duplicates. For fairness, the same procedure is conducted on the Dumas list

and the resulting precision, recall and F-Measure of the 500 duplicates are

reported. For the Dumas list, the results are reported both with and without the

uniqueness constraint. Because the data is both deterministic and single-

valued (i.e. not obtained as a series unlike the previous experiment), statistical

significance testing does not apply to this part of the experiment.

The parameter ݐℎݏ݁ݎℎ in Algorithm 5.1 is set at 0.01 (and in self-

tuning mode; see Section 5.2) for all experiments. The self-tuning

functionality was never invoked, indicating that the default value of ݐℎݏ݁ݎℎ is

typically adequate, even across the wide variety of test cases.

Finally, the precision of the 500 non-duplicates generated through

permutation is also reported. Given that the vast majority of entity pairs are

non-duplicates, computing the recall of the generated non-duplicates training

set serves no purpose, since it is expected to nearly equal 0. The permutations

are conducted across ten independent trials for each test case, and averages

and standard deviations (of the resulting non-duplicates precision) are both

recorded.

99 This constraint is denoted as the uniqueness constraint.

91

5.3.4 Results and Discussion

Figures 5.2 and 5.3 illustrate the results of the proposed TSG against

the Dumas TSG based on whether the highest F-Measure achieved by either

method was above 60%. Except on Eprints-Rexa and Parks, the proposed

TSG outperforms the Dumas TSG. Except on Parks, the performance

difference between the systems is statistically significant, with the test

conducted over the two F-Measure series.

Closer investigation of the anomalous Eprints-Rexa result showed

that the problem arose because of severe property heterogeneity. Rexa has 115

distinct property labels, while Eprints only has 24 distinct property labels.

While the ܨܦܫܨܶ ݃݋ܮ distance measure was able to somewhat compensate

for this mismatch, the subsequent ݀ݎܽܿܿܽܬ measure that was used to re-sort

the list in lines 6-7 of Algorithm 5.1 led to a decline in the overall results. To

test the hypothesis that property heterogeneity caused ݀ݎܽܿܿܽܬ to perform so

poorly, an additional experiment was conducted where the top 500 duplicates

output by the initial run of the TSG on Eprints-Rexa was input to the hybrid

property aligner (described in Algorithm 6.1 in the following chapter). The

properties that were absent in the alignment set output by the aligner were

discarded and the TSG was re-run.

Figure 5.2: Results for the test cases where maximum achieved F-Measure did not exceed 60%.

92

The second figure in Figure 5.2 shows that this simple unsupervised

step can be used to boost results in cases where the property heterogeneity is

severe, even though this is not the primary purpose of the property aligner.

Figure 5.3: Results for the test cases where maximum achieved F-Measure exceeded 60%.

93

Table 5.2: Comparative results for three training set generation systems with fixed parameters.

Prec. and FM stand for Precision and F-Measure respectively. All values are percentages.

Table 5.2 shows the precision, recall and F-Measure of the top 500

duplicates retrieved from the lists returned by the Dumas TSG and Algorithm

5.1, such that no instance is ever repeated more than once in the set of

duplicates. Since the original Dumas TSG does not apply the uniqueness

constraint, the results of retrieving the actual top 500 duplicates (regardless of

whether instances are repeated) from the Dumas list are also reported

alongside. Note that the recall metric is computed differently in Table 5.2.

Specifically, the number of true positives in the retrieved 500 duplicates is

divided by the quantity min ሺͷͲͲ, |Ω௠|ሻ, where |Ω௠| is the actual number of

matching entities (Table 5.1), instead of |Ω௠| (as with traditional recall

computation100). The table shows that the described TSG equals or

outperforms the baseline systems on six datasets. On two of the remaining

datasets, its F-Measure is within 6% of the winning F-Measure and on

average, the system outperforms the baselines on all metrics.

100 The reason for bounding the denominator in this particular experiment is to prevent the recall from

exceeding 100%.

94

Finally, the set of 500 non-duplicates generated by permuting the set

of duplicates obtained from the three systems in Table 5.2 had high overall

quality, with average precision on all test cases (and for all three systems) at

least 98%, and with less than 1% standard deviation across ten independent

trials per test case and system. At a p-value of less than 0.01, the difference

between the three setups was not found to be statistically significant for any

of the test cases at the 99% level. Since the results on all ten test cases were

near-identical, they are not tabulated.

95

Chapter 6: Property Alignment

This chapter101 describes property alignment, which is one of the three

functions that must be learned using the generated training set. Property

alignment is, in principle, similar to type alignment but is finer-grained, and

as argued in both Chapters 1 and 2, has implications for both quality and

complexity of overall instance matching.

Figure 6.1 illustrates the goal of property alignment in the overall

context of the running example introduced earlier in the dissertation. A

property alignment, which is a set of semantically related property

(equivalently, attribute) pairs, must be output for each pair of aligned types.

Caveats noted about type alignment in Chapter 4 (e.g. about the problem being

ill-defined and data-driven) also apply to property alignment.

In a series of exploratory experiments, we found that the performance

of a property alignment algorithm on the recall metric is tightly coupled with

the success of later steps102. High-recall (i.e., with recall greater than 80%)

property alignment is thus a bottleneck that is required for successful

execution of the overall pipeline. While existing solutions from the literature

achieve high recall on some test cases (Section 6.2), they do not achieve the

required levels (on average) on the ten test cases introduced in the previous

chapter.

If high recall was all that was required, an algorithm could simply

output all possible property alignments. Such an output would have 100%

recall, but would not be useful because its precision would be trivially low. A

viable algorithm must achieve high recall while still maintaining moderately

high precision. The sensitivity of the precision-recall tradeoff to tunable

parameters further suggests that the algorithm should effectively be

parameter-free to achieve the desired balance.

This chapter presents a property alignment algorithm that is designed

to accommodate the requirements above in a domain-independent fashion. To

101 The technical material in this chapter was previous published as part of an article in the Journal of
Web Semantics (Kejriwal & Miranker, 2015c).

102 More precisely, those preliminary experiments (not reproduced herein) showed that a key metric

(Reduction Ratio) of the blocking algorithm was highly correlated with the recall of property alignment.

96

the best of our knowledge, this is the first such algorithm that achieves

consistently high recall without requiring any parameter tuning. For this

reason, we consider it as the second core contribution of this dissertation,

similar to the training set generator in Chapter 5.

Figure 6.1: An illustration of property alignment. Note that, despite the visual similarity to

:sameAs properties, these lines do not represent actual property declarations; hence, are unlabeled. Also,

unlike the dashed lines in previous figures, the alignments in this figure are between edges, not nodes.

6.1 Approach

This section presents an algorithm for performing alignment between

the attribute sets ܣଵ and ܣଶ of the two property tables ଵܲ and ଶܲ respectively.

The alignment algorithm only uses the training samples (generated by

Algorithm 5.1), and not the full datasets. This observation impacts the design

of a scalable implementation in Chapter 8.

97

For notational succinctness, refer to an attribute of ܣଵ as ܽ௜ଵ and an

attribute of ܣଶ as ௝ܽଶ where ݅ and ݆ range from 1 to the number of attributes in ܣଵ and ܣଶ respectively. Using this notation, an aligned attribute pair is

defined as follows.

Definition 6.1 (Aligned Attribute pair) Given attribute sets ܣଵ and ܣଶ from two RDF datasets ܦଵ and ܦଶ respectively, an attribute pair (ܽ௜ଵ, ௝ܽଶ) .ଶ is said to be aligned if ܽ௜ଵ and ௝ܽଶ are semantically relatedܣ×ଵܣ א

Let ܳ denote a set of aligned attribute pairs. In keeping with the

terminology first introduced in Chapter 4, ܳ is henceforth referred to as a

property alignment. If the attribute sets of the input property tables are

interpreted in a manner similar to Relational Database (RDB) schemas, ܳ is

like a set output by a schema matcher with local ͳ: ͳ cardinality but global ݉: ݊ cardinality. The following example illustrates the concept.

Example 6.1: Consider the two property tables in Figure 6.2. The

property alignment ܳ should ideally contain the alignments (Subject, Subject),

(d1:hasWife, d2:spouse), (d1:hasBrother, d2:sibling), (d1:hasBrotherInLaw,

d2:inlaw), (d1:year, d2:birthdate), (d1:month, d2:birthdate), (d1:day,

d2:birthdate), since alignments can be partial103. The global cardinality is ݉: ݊ since an attribute participates in more than one alignment in ܳ. The local

cardinality is ͳ: ͳ since each alignment is between two attributes and not two

sets of attributes.

Herein, an aligned pair ሺܽ௜ଵ, ௝ܽଶሻ is meant to indicate semantic

relatedness between the ݅௧ℎ and ݆௧ℎ columns of ଵܲ and ଶܲ respectively. The

alignment set ܳ is not important by itself, but like the training set, will prove

to be an important input to the feature generator component described in

Chapter 7. Intuitively, the alignment set will enable the feature generator to

constrain the size of the feature space (Chapter 7).

103 The alignment is referred to as partial because the notion of semantic relatedness between two

attributes is closest to the notion of a partial overlap between their set representations.

98

Figure 6.2: Two single-type RDF graphs, serialized as logical property tables, used as running

examples in this chapter for illustrating property alignment.

One solution to generating an alignment set is to use an instance-based

matcher such as Dumas (Bilke & Naumann, 2005). As earlier stated, Dumas

generates noisy duplicates using its own TSG and performs (both global and

local) ͳ: ͳ schema matching. As the simple example of Figure 6.2 shows,

global ͳ: ͳ pairings are not adequate for this task and could lead to loss of

information.

Dumas also does not consider the names of attributes, which can be

quite indicative, especially in Linked Data property namespaces (Papadakis,

Demartini, Fankhauser & Kärger, 2010). As a simple application of this

finding, consider that the first column of every property table is always named

subject; the pair (subject, subject) should always be included in ܳ . At the same

time, the birthdate pair in Example 6.1 shows that only considering the names

can be problematic, since the attribute d1:date_of_birth is lexically more

similar to d2:birthdate than d1:year, d1:month and d1:day.

Similar issues arise if column-based matchers are adapted instead of

instance-level matchers (e.g. Dumas). Column-based matchers match

columns based on the degree of overlap between their value-sets. Several

99

property aligners used both within and without the context of instance

matching employ a similar technique based on extensional (or object-value

overlap) of RDF properties104. Some of these were described in Chapter 3.

Both Dumas and a generic column-based matcher are used as baselines when

evaluating the property alignment step.

To address the described challenges, a hybrid parameter-free property

aligner is presented. The aligner considers both the names of the properties,

as well as columnar aggregations of training data. The thesis is that, by using

a judicious combination of informative signals, robust performance can be

achieved, especially with respect to the recall metric.

Algorithm 6.1 shows the pseudocode of the property aligner. First,

the algorithm strips the URI prefixes of property columns105 and uses a basic

exact-match indexing procedure on the resulting URI stems (after converting

them to lower case strings) to heuristically determine the trivial ͳ: ͳ

alignments (lines 1-5). An obvious consequence is that ܳ is guaranteed to

include the pair (subject, subject).

Input: Sets ܦand ܰ of positive and negative training samples respectively

Attribute sets ܣଵ and ܣଶ

Output: Property Alignment ܳ

Steps:

1. Initialize empty set ܳ
2. Initialize numeric variable avg := 0

3. Initialize empty |ܣଵ|×|ܣଶ| dimensional matrix ܯ

4. for all attribute pairs ሺܽ௜ଵ, ௝ܽଶሻ in ܣଵ×ܣଶ do

if URI stems106 of ܽ௜ଵ and ௝ܽଶ exactly match then

 Add ሺܽ௜ଵ, ௝ܽଶሻ to ܳ

104 In the Raven system, for example, stable matching of properties primarily relied on object-value

overlap (Ngomo, Lehmann, Auer & Höffner, 2011).
105 The subject column is an exception since it is not a URI; it is assumed to be its own URI stem.
106 A URI stem is the part of the string that follows the URI prefix. For example, in Figure 6.1, the URI

stem of dbpedia:Allen_,Paul is Allen_,Paul.

100

end if

5. end for

6. for all attribute pairs ሺܽ௜ଵ, ௝ܽଶሻ in ܣଵ×ܣଶ do ܯ[݅, ݆] ≔ ,ܦ)݉݅ܵ݊݉ݑ݈݋ܥ ܽ௜ଵ, ௝ܽଶ) − ,ሺܰ݉݅ܵ݊݉ݑ݈݋ܥ ܽ௜ଵ, ௝ܽଶሻ

7. end for

8. for all pairs ሺܽ௜ଵ, ௝ܽଶሻ א ܳ do

=+݃ݒܽ ,ܦ)݉݅ܵ݊݉ݑ݈݋ܥ ܽ௜ଵ, ௝ܽଶ) − ,ሺܰ݉݅ܵ݊݉ݑ݈݋ܥ ܽ௜ଵ, ௝ܽଶሻ|ܳ|

9. end for

10. for all entries in ܯ do

if entry ܯ[݅, ݆] ൒ then ݃ݒܽ

 Add ሺܽ௜ଵ, ௝ܽଶሻ to ܳ

end if

11. end for

12. Output ܳ

Algorithm 6.1: An algorithm for property alignment.

Before describing the rest of the algorithm, the ݉݅ܵ݊݉ݑ݈݋ܥ score

over a set (e.g. ܦ) of ݊ record pairs ܦ = {ሺݎଵ, ,ଵሻݏ … , ሺݎ௡, ௡ሻ} is computed asݏ

follows. The ݉݅ܵ݊݉ݑ݈݋ܥ function takes as input ܦ and two attributes, ܽ௜ଵ ܽ ଵ andܣ א ௝ଶ א ܴ ଶ. Denote asܣ and ܵ the tables containing the records ݎଵ, … , ,௡ݎ

and ݏଵ, … , tokenizes the ݅௧ℎ and ݆௧ℎ columns ݉݅ܵ݊݉ݑ݈݋ܥ .௡ respectivelyݏ

(using the same tokenizer ܶ in Algorithm 5.1) of ܴ and ܵ respectively to obtain

two sets of tokens107, ܴ′ and ܵ′. The ݀ݎܽܿܿܽܬ score, with a formula provided

in Chapter 5, of ܴ′ and ܵ′ yields the final ݉݅ܵ݊݉ݑ݈݋ܥ score.

107 Reserved keywords like ݈݈݊ݑ are automatically excluded from token sets being processed at any

stage of the pipeline.

101

In lines 6-7, a matrix ܯ is populated, with the [݅, ݆]௧ℎ cell of the matrix

containing the value obtained by subtracting the ݉݅ܵ݊݉ݑ݈݋ܥ scores of the

corresponding attributes ܽ௜ and ௝ܾ over ܦ and ܰ. The subtraction serves as a

conservative filter to prevent accidental matches from happening.

Using the current alignments in ܳ (obtained earlier through exact

matching of URI stems), the average score of matrix cells corresponding to

elements in ܳ is computed as ܽ݃ݒ, and used as an automatic threshold to pick

property alignments (line 10). The resulting alignment set ܳ is then output

(line 12).

Using a hash-based method, the loop in line 4 runs in time ܱሺ|ܣଵ| -ଶ|ሻ. Assuming (based on characteristics of commonly encountered realܣ|+

world data) that within an attribute set ܣ, no two attributes have the same URI

stems108, ܳ (at the end of line 5) has maximum cardinality ݉݅݊ሺ|ܣଵ|, .ଶ|ሻܣ|

Populating the matrix in lines 6 and 7 can be done in time ܱሺሺ|ܦ| +|ܰ|ሻ|ܣଵ||ܣଶ|ሻ, making this the most expensive step of the algorithm. The run-

time of this step subsumes the computations in the remainder of the algorithm,

since lines 8-11 require two passes over the matrix ܯ.

In practice, Algorithm 6.1 was found to run near-instantaneously (less

than a minute) even in the case of a benchmark with over a hundred properties

(Section 6.2). The parameter-free nature of Algorithm 6.1 lends it an

advantage in that it can be run like an off-the-shelf black box by a practitioner,

precluding the need for cumbersome parameter tuning. To the best of our

knowledge, a hybrid parameter-free property aligner does not exist in the

current research literature.

Scalability of the algorithm (using MapReduce) is based on the same

premise as the scalability of the type alignment algorithm in Chapter 4. The

intuition therein was that, once the type matrix was constructed, all its

elements could be routed to a single Reducer, and the Reduce program would

essentially be a serial type alignment strategy. In the current scenario, a similar

intuition applies: once the training set is generated, it can all be routed to a

single Reducer. Algorithm 6.1 is used as the Reduce program. Note that an

108 The actual implementation does not fail if this assumption is occasionally violated. It is invoked here

mainly for the sake of analysis.

102

assumption here, justified in Chapter 5, is that the training set is not too

large109.

6.2 Evaluations

The test suite used for the evaluations in this chapter was described in

Chapter 5, and summarized in Table 5.1. The column ‘Property Alignments’
in Table 5.1 contains the number of pairs in a putative (i.e. manually

constructed110) property alignment ground-truth.

6.2.1 Setup

The 500 duplicates and non-duplicates output by the proposed TSG

are input to the hybrid property aligner described by Algorithm 6.1. Two

baselines are used in this experiment to illustrate the benefits of a hybrid

aligner. The first baseline is the Dumas schema matcher (Bilke & Naumann,

2005), which uses the noisy duplicates generated by the Dumas TSG (without

the uniqueness constraint; see Table 5.2). The matcher computes a similarity

matrix for each of the ݊ duplicates, and then aggregates them into a single

matrix on which the max. Hungarian algorithm is executed (Munkres, 1957).

Recall, from Chapter 4, that the Hungarian algorithm is a generic procedure

which assigns a different row to each column111, such that the total sum of

values in the chosen cells is maximized over all valid assignments. Because

the procedure cannot assign the same row to two different columns, Dumas

can only output an alignment set with global112 ͳ: ͳ cardinality. When

evaluating Dumas, a full parameter sweep was conducted to ensure optimal

performance. Thus, the number of generated duplicates was not fixed at 500

for Dumas, but tuned for each test case. Only the best results are reported for

Dumas.

109 If it is, the situation can still be resolved by building the matrix ܯ in Algorithm 6.1 using parallel

algorithms, and then treating ܯ like the type matrix. This precaution is usually unnecessary as instance
matching applications do not involve ‘large’ schemas (Christen, 2012a).
110 Unlike with type alignment, the use of a putative ground-truth for evaluating property alignment is

inescapable. Blocking metrics cannot be used, since instances are composed of properties and property
values (unlike types and blocks, which are each composed of instances).
111 Without loss of generality, assume that the number of columns is no greater than the number of rows.
112 That is, each property can participate in at most one match.

103

The second baseline is denoted as the Column Matcher, and uses

similar principles as property aligners proposed in recent Semantic Web

instance matchers such as Raven (Ngomo et al., 2011c). The Column Matcher

directly constructs a single similarity matrix by computing the ݀ݎܽܿܿܽܬ score

of all values in two columns corresponding to a cell of the similarity matrix.

Unlike Dumas and Algorithm 6.1, the Column Matcher does not use a training

set. Once the similarity matrix is constructed, all values above a threshold are

output as a match. Similar to the evaluations over Dumas, a full sweep is

conducted over the threshold range [Ͳ,ͳ] to ensure optimality. Note that the

parameter sweeps confer an empirical advantage on both baselines, since the

presented aligner takes as arguments the top 500 samples (with the uniqueness

constraint) output by the training set generator described in Algorithm 5.1, and

is parameter-free. Note that, on Eprints-Rexa, the top 500 samples output by

the original TSG run (not the re-run; see Figure 5.2) are passed as arguments

to Algorithm 6.1 to avoid biasing the results.

The metrics for these experiments are precision, recall and their F-

Measure, defined as earlier. Since all parameters have already been fixed (and

for the baselines, at optimal values), single-point estimates are obtained and

tabulated. Graph plots are not applicable to this scenario.

6.2.2 Results and Discussion

The results of property alignment are tabulated in Table 6.1. The

superior performance of both Dumas and Algorithm 6.1 against the Column

Matcher presents a strong case for the use of instance information (even with

noise present) when aligning the properties.

Note that, although Algorithm 6.1 is outperformed by the baselines

on six of the test cases, it is more balanced in its precision-recall tradeoff and

outperforms, on average, both baselines by over 10% in terms of F-Measure.

Algorithm 6.1 scores below 75% on precision on only two of the datasets

(Libraries and Parks), and never below 75% on recall. Dumas scores below

75% on recall on half the datasets. The Column Matcher is even more skewed,

with less than 75% recall on eight of the datasets.

Given that the alignment set is not intended to be used as an output in

itself but for building a tractable feature space (Chapter 7), this distinction is

important, since property alignment recall is more important in the context of

104

the overall instance matching task than precision. Intuitively, recall matters

more than precision113 because not every feature in the feature space (utilized

by subsequent learning algorithms) has to be ‘high-performing’, but the
absence of good features (due to low recall) potentially leads to degraded

blocking and classification recall. By this argument, the machine learning

algorithms simply ignore the features that are ‘not useful’, so a few wrong
pairs in the alignment are not expected to have significant impact on blocking

or classification.

Table 6.1: Comparative results for three property alignment systems. Prec. and FM stand for

Precision and F-Measure respectively. All values are percentages.

A last point to note is the proposed aligner's robustness to noise, as

exhibited by the performance on Eprints-Rexa, where the generated set of 500

duplicates had an F-Measure below 50% (Table 5.2).

113 Even on the precision metric, both baselines score below 75% roughly half of the time, exhibiting the

unpredictable nature of their performance.

105

Chapter 7: Blocking and Classification

This chapter covers the final steps of the schematic in Figure 1.5,

namely blocking and similarity114. In Chapter 2, a computational motivation

for this two-step formulation was described: quadratic complexity of

exhaustive pairwise instance matching is untenable, even for datasets

containing only thousands of entities. In the blocking step, a blocking scheme

is used to cluster entities115 into (possibly overlapping) blocks. Earlier

discussions on the advantages116 of DNF blocking schemes (Chapter 2)

suggest their application to RDF data. Prior work assumed a strictly

homogeneous Relational Database framework for the formalism and learning

of DNF blocking schemes, making their application to heterogeneous RDF

graphs an uncertain prospect (Michelson & Knoblock, 2006; Bilenko, Kamath

& Mooney, 2006). Another issue arises in the extant learning algorithm, which

assumes a supervised setting with perfectly labeled training data, as opposed

to the noisy data generated by the training set generator described in Chapter

5.

As a third core contribution in support of this dissertation, we present

both formalism and a learning algorithm for DNF blocking schemes that

execute on RDF entities. Empirically, the learned schemes are shown to be

competitive with, and in many cases, outcompete, a leading blocking

algorithm designed for RDF datasets (Section 7.2.1).

Once blocks are formed, a blocking method is used to form a

candidate set. In the similarity step, each entity pair in the candidate set is

transformed to a feature vector, which is then classified by a previously trained

machine learning model. Although rule-based, distance-based and other

similarity techniques have also been explored in the research community (over

a period of 50 years), machine learning has emerged as a dominant similarity

paradigm (Christen, 2012a; Bilenko & Mooney, 2003). For this reason, the

similarity step is equivalently referred to as the classification step in the rest

of this chapter.

114 The technical material in this chapter was previous published as part of an article in the Journal of

Web Semantics (Kejriwal & Miranker, 2015c).
115 Recall that an RDF entity is operationally equivalent to a record in a property table serialization.

116 Two advantages were that they can be learned from training data, and have exhibited superior

empirical performance compared to alternatives.

106

Practical implementations of blocking, feature generation and

similarity are not quite as straightforward. Several details have to be worked

out, the most important of which is the specific feature space in which to

represent each pair of entities. Also, the algorithms in this chapter take as input

both the automatically generated training set (Chapter 5) and the property

alignment (Chapter 6), which adds a layer of complexity to their development

and evaluation. Since the feature generation and learning procedures are

conceptually related, their treatment is covered in this single chapter.

7.1 Approach

7.1.1 Feature Generator

The generated training set and property alignments, output by

Algorithms 5.1 and 6.1 respectively, are now input to a feature generator that

converts each record pair in the training set to a feature vector. The features

are subsequently described. The output of the feature generator comprises two

sets containing ݊ feature vectors each, where ݊ is the number of duplicates117

in the training set.

The property tables, ଵܲ and ଶܲ introduced in Figure 6.2 are used as

running examples in this chapter as well. Recall that the attribute sets of ଵܲ

and ଶܲ were denoted by the symbols ܣଵ and ܣଶ respectively. An attribute in ܣଵ, representing the ݅௧ℎ column in ଵܲ, is denoted by the symbol ܽ௜ଵ; similarly,

for an attribute in ܣଶ. Finally, the symbols ݎ and ݏ are again used to denote

generic records from ଵܲ and ଶܲ respectively.

 Using the symbol ∗ for the Kleene star, a property-specific indexing

function (P-SIF) is defined as follows:

Definition 7.1 (Property-specific indexing function) Given an alphabet Σ, a

property table ܲ, and an attribute ܽ௜ from the attribute set of ܲ, a property-

specific indexing function (P-SIF) is defined as a function ℎ௜: ܲ → ʹΣ∗
 that

takes as input a record from the table ܲ and is applied on the attribute value

117 And also the number of non-duplicates, since balanced training was assumed in the TSG (Section

5.2).

107

of the record corresponding to ܽ௜. The resulting output is a set ܻ of strings

over the alphabet Σ.

While technically possible to construct a special P-SIF ℎ௜ for the ݅௧ℎ

column of the table, it is more appropriate for an unsupervised procedure to

consider a set ܩ of general indexing functions or GIFs. A GIF is a generic

function that accepts a primitive data type (taken to be String, without loss of

generality) as input and returns a set of primitive data types (i.e. Strings) as

output. Given such a property-agnostic set ܩ and an attribute set ܣ of some

property table, the set ܪ of all possible P-SIFs can be constructed by forming

the Cartesian product of ܩ and ܣ. If some function in ܩ is inapplicable to an

attribute in ܣ, the P-SIF returns the empty set.

Example 7.1 Consider the first tuple of ଵܲ in Figure 6.2 and the simple GIF ܶݏ݊݁݇݋, which accepts a string as input, tokenizes it and returns the set of

tokens as output. Applied to each of the eight attributes in ܣଵ, eight P-SIFs ℎଵ, … , ℎ଼ can be constructed. For the null attribute values, an empty set is

returned. On the other hand, consider a GIF ݏݎ݁݃݁ݐ݊ܫ݋ܱܶ݁݊݀݀ܣ. This GIF

would also parse the tokens in the string but it would discard all non-integer

tokens. The tokens that can be parsed as integers would be incremented, re-

cast as strings and collectively output as a set. ݏݎ݁݃݁ݐ݊ܫ݋ܱܶ݁݊݀݀ܣ would

only be applicable to certain numeric attributes (such as d1:day in ܣଵ), and

would return the empty set for all others.

In the rest of the chapter, the sets ܪଵ and ܪଶ of P-SIFs are assumed to

be formed over respective attribute sets ܣଵ and ܣଶ, by taking the cross-product

of the attribute set with a given set ܩ of GIFs. Thus, it is always the case that |ܪ௜| equals |ܣ||ܩ௜|, for ݅ = ͳ,ʹ. The set ܩ forms the atomic feature set, from

which feature spaces for each property table are individually constructed by

using the attribute set. The twenty-eight GIFs used in the system are described

below.

 (1) Identity: Returns a singleton set containing the string.

 (2) Tokens: Tokenizes the string based on a set of delimiters specifically

designed for RDF elements, and outputs the set of tokens.

 (3) Integers: Similar to (2) but discards all strings in the output that cannot

be parsed as integers.

 (4) ManipulateIntegersByOne: Same as (3), except that for every integer ܽ,

integers ܽ − ͳ and ܽ + ͳ are converted to strings and added to the output set

108

along with ܽ. The GIF ݏݎ݁݃݁ݐ݊ܫ݋ܱܶ݁݊݀݀ܣ, described in Example 7.1, is a

simplified version of this GIF.

(5-7) ExtractNCharPrefixes: Same as (2) except that each token is further

truncated to its first N characters. If the token has fewer than ܰ characters, it

is left intact. Three GIFs were implemented, with ܰ set to 3, 5 and 7

respectively.

 (8-10) ExtractTokenNGrams: Tokenizes the string as an ordered list and

extracts length-N contiguous subsequences of tokens. If the list of tokens

contains fewer than N tokens, the list becomes its own only subsequence. Each

subsequence is added to the output set. Three GIFS were implemented, with ܰ set to ʹ,Ͷ and ͸ respectively.

 (11-17) ExtractNonSoundexPhoneticFeatures: Tokenizes the string and

adds the phonetic encoding of each token to the output set. The phonetic

functions used for implementing seven GIFs in total are Caverphone1,

Caverphone2, ColognePhonetic, DoubleMetaphone,

MatchRatingApproachEncoder, Metaphone and NYSIIS. The popular

Soundex encoding is treated specially (see below). A library implementing all

these encoding functions efficiently exists in an Apache open-source

package118 and was adapted for the system.

 (18-27) ExtractSoundexPhoneticFeatures: Tokenizes the string and adds

the Soundex encoding of each token to the output set. Along with the original

Soundex encoding algorithm (implemented in the Apache open-source

package), a refined version (also implemented in the package) as well as eight

variations implemented in the open-source FEBRL package are also

considered (Christen, 2008a). An example of a variation is to truncate each

Soundex encoding to only the first four characters.

(28) ExtractAlphaNumeric: Extracts all tokens from the string such that a

token contains at least one alphabet as well as a numerical digit (in addition to

other optional characters). A rationale for this feature is subsequently

provided.

The first ten GIFs are standard and have already been found to work

well in previous work, including the original Relational Database setting in

which they were first proposed (Bilenko, Kamath & Mooney, 2006). A brief

118 org.apache.commons.codec.language

109

rationale for the features is provided below. Further details and accompanying

examples are provided on the project website119.

GIFs 1-2 are appropriate for strings that have high token overlap or

for alphanumeric codes (e.g. in product databases) that tend to match exactly

and have high correlation with duplicate classification. GIFs 3-4 are more

appropriate for phone numbers, zip codes, street numbers, social security

numbers, dates of birth and other numeric quantities that commonly occur in

databases. GIFs 5-7 are empirically robust to many data representation issues;

for example, GIF 5 would not distinguish between strings that spell ‘Avenue’
as Avenue or Ave. GIFs 8-10 generate token N-grams and are useful for

detecting discriminative phrases in long descriptions.

Christen (2012a) evaluates the phonetic encodings, including

Soundex and its variations, used by GIFs 11-27. The advantage of phonetic

functions is that they are robust to spelling variations (especially in names)

that the other GIFs cannot easily accommodate (e.g. Kathryn vs. Catherine).

Using a range of phonetic encodings compensates for the quirks of a single

encoding. Variations of phonetic encodings can further help to compensate for

other sources of noise, such as missing prefixes and extreme misspellings.

Since phonetic encodings are not trivial to compute, it makes computational

sense to only consider variations of one particular phonetic encoding. The

Soundex encoding was chosen for this purpose because it is well-studied and

has an efficient, transparent implementation in packages such as FEBRL

(Stephenson, 1980; Christen, 2008a).

Finally, the utility of GIF 28 is best realized in the cases where ID

strings are often present and can be used to identify duplicate entities. Such

strings tend to have both alphabets and digits and are relatively rare.

Compared to more general token-based features (such as GIF 2), GIF 28 tends

to be more discriminative, which helps the subsequent feature selection

process.

Let ℎ௜ଵ denote a P-SIF in ܪଵ (and a similar analysis applies to a P-SIF ℎ௝ଶ in ܪଶ), where ℎ௜ଵ is the P-SIF obtained by combining the GIF ݃ א and ܩ

the attribute ܽ௜ଵ א א ݎ ଵ. Applied to a recordܣ ଵܲ, let the output of the P-SIF ℎ௜ଵ be denoted as ℎ௜ሺ௥ሻଵ .

119 https://sites.google.com/a/utexas.edu/mayank-kejriwal/projects/unsupervised-im

110

Given this notation, let a property-specific feature be defined as

follows:

Definition 7.2 (Property-specific feature) Given two P-SIFs ℎ௜ଵ א ଵ and ℎ௝ଶܪ א ଶ, a property-specific feature ௜݂௝ is defined as a binary function thatܪ

takes as input a record pair ሺݎ, ሻ and returns 1 iff ℎ௜ሺ௥ሻଵݏ ת ℎ௝ሺ௦ሻଶ is non-empty,

and returns 0 otherwise.

Input: Sets ܦand ܰ of duplicates and non-duplicates respectively

Property Alignment ܳ

Set ܩ of General Indexing Functions (GIFs)

Output: Sets ܦ௙ and ௙ܰ of duplicates and non-duplicates feature-vectors respectively

Steps:

5. Initialize empty feature-vectors sets ܦ௙ and ௙ܰ
6. if ܳ is empty then

 ܳ ≔ ଶܣ×ଵܣ

7. end if

8. for all record pairs ሺݎ, ሻݏ א do ܦ

 Initialize ݂ to a |ܳ||0 |ܩ-vector

 for all alignments ሺܽ௜ଵ, ௝ܽଶሻ א ܳ do

for all GIFs ݃ א do ܩ

 Let ℎ௜ଵ and ℎ௝ଶ be the P-SIFs obtained by

 combining ݃ with ܽ௜ଵ and ௝ܽଶ respectively

 Let ௜݂௝ denote the property-specific feature

 formed from ℎ௜ଵ and ℎ௝ଶ respectively

 if ௜݂௝(ሺݎ, (ሻݏ = ͳ then

݅|ܩ|]݂ + ݆] ≔ ͳ

 end if

111

end for

 end for

9. end for

10. Repeat steps 4-5 by iterating over ܰ, and populate ௙ܰ

11. Output ܦ௙ and ௙ܰ

Algorithm 7.1: An algorithm for generating feature-vectors sets from training sets.

Given an alignment set ܳ, each tuple pair in the training set can be

converted to a feature vector with |ܩ||ܳ| binary elements, with each element

corresponding to a single invocation of a property-specific feature ௜݂௝ on the

tuple pair, where ሺܽ௜ଵ, ௝ܽଶሻ is an element in ܳ. The pseudocode is provided in

Algorithm 7.1.

Note that the dimensionality of each feature vector is directly

proportional to ܳ. In the event that ܳ is unavailable, the only recourse (a

‘fallback’ option) for the system is to consider the exhaustive set ܣଵ×ܣଶ (line

2). This demonstrates why having a compact, high-recall property alignment

set ܳ is important, since both the quality and size of the resulting feature space

depends on the quality of, and number of alignments in, ܳ.

Given a training set with ݊ duplicates and non-duplicates, the feature

generator outputs two feature sets with ݊ binary vectors each. Assuming that

the run-time of each GIF ݃ א ܱ can be bounded above by ܩ ሺܿሻ, the time taken

by Algorithm 7.1 is ܱሺܿ݊|ܩ||ܳ|ሻ.

7.1.2 Learning Procedures

The two sets of feature vectors are now input to two independent

training procedures, which respectively learn a blocking scheme for the

blocking step, and an SVM classifier, which serves as a probabilistic link

specification function for the similarity step.

112

Blocking Scheme Learner

In the following discussion, let � denote the set of precisely those

property-specific features that have the value 1 in at least one feature-vector

in the set ܦ௙ ׫ ௙ܰ. In other words, � contains property-specific features that

cover at least one feature vector in the training set. An obvious upper bound

on |�| is |ܩ||ܳ|, since each feature vector has at most |ܩ||ܳ| elements. In

practice, the diversity of the twenty-eight GIFs in Section 7.1.1 results in |�|
being less than |ܩ||ܳ|. Interpreting each of the features in � as a Boolean120

variable, a property-specific blocking scheme in Disjunctive Normal Form

(DNF) can be defined as follows:

Definition 7.3 (Property-specific Disjunctive Normal Form blocking

scheme) Given a set � of property-specific features, let a property-specific

Disjunctive Normal Form blocking scheme ܤ be defined as a disjunction of

terms, where each term is a conjunction of features from �.

As described in Chapter 2, this class of blocking schemes (henceforth,

simply referred to as DNF blocking schemes) was first proposed for

structurally homogeneous Relational Databases (RDBs) and found to deliver

excellent empirical performance (Bilenko et al., 2006; Michelson &

Knoblock, 2006). To the best of our knowledge, our work was the first to adapt

this class of blocking schemes to heterogeneous RDF data (Kejriwal &

Miranker, 2015a; 2015c). The class of DNF blocking schemes devised for

RDBs is a special case of the class of property-specific DNF blocking schemes

defined in Definition 7.3. Note that a DNF blocking scheme is a positive

formula, since a term cannot contain negated features from �.

Let the DNF blocking scheme be denoted as a ݇-DNF blocking

scheme if each term is constrained to contain at most ݇ features. Let a ͳ-DNF

blocking scheme be denoted as a disjunctive blocking scheme, since it is a

single clause. In order to learn a DNF blocking scheme, ݇ must be specified

as a parameter. The DNF blocking scheme is said to cover a record pair (or its

equivalent feature vector representation) if it evaluates to ܶ݁ݑݎ for that pair.

Ideally, the learned scheme should cover as many of the duplicates as possible,

while minimizing coverage of the non-duplicates.

120 With the 1 value interpreted as True and 0 as False.

113

The problem formulation described above is similar to that of the

classic Set Covering (SC) problem (Chvatal, 1979). This connection (between

DNF blocking scheme learning and SC) was first showed by Bilenko et al.

(2006), when the DNF blocking scheme learning problem for structurally

homogeneous RDBs was reduced to Red-Blue SC (Peleg, 2007). Although the

problem discussed herein is more general (since two property tables may be

structurally heterogeneous), a similar reduction applies.

Input: Sets ܦ௙ and ௙ܰ of duplicates and non-duplicates feature-vectors

respectively

Set � of property-specific features

Term parameter ݇

Set cover threshold parameter �

Output: Property-specific k-DNF blocking scheme ܤ

Steps:

1. Supplement set � to get set �௞ (Equation 7.1)
2. Construct ܯ� =< ܺ, �� >, where ܺ is a feature vector in ܦ௙, and �� ⊆ �௞ contains the elements in �௞ covering ܺ

3. Repeat Step 2 to build ܯே for feature vectors in ௙ܰ

4. Reverse ܯ� and ܯே to get ܯ′� and ܯ′ே respectively

5. for all ܺ א ሻ do�′ܯሺݐ݁ݏݕ݁݇

 Score ܺ by using formula
|ெ′�ሺ�ሻ||��| − |ெ′�ሺ�ሻ||ே�|

 Remove ܺ if ݁ݎ݋ܿݏሺܺሻ < �

6. end for

7. Perform Weighted Set Covering on keys in ܯ′� using Chvatal’s heuristic
(Chvatal, 1979), with weights set to the negation of the scores calculated

above

ܤ .8 ∶= disjunction of chosen keys

9. Output ܤ

Algorithm 7.2: An algorithm for learning a property-specific k-DNF blocking scheme.

114

Unfortunately, SC is NP-complete121 (Carr, Doddi, Konjevod &

Marathe, 2000). Using an additional threshold parameter �, an SC

approximation algorithm from the literature can be leveraged to learn a ݇-

DNF blocking scheme. The pseudocode is given in Algorithm 7.2.

In line 1, Algorithm 7.2 uses ݇ to supplement the set � and obtain the

set �௞. If an ݅-term is defined as a term that is constructed by forming a

conjunction of exactly ݅ property-specific features from �, and ௜ܵ as the set of

all possible ݅-terms, �௞ is given by the expression:

 �௞ = ⋃ ܵ௜௞
௜=ଵ ሺ͹.ͳሻ

Figure 7.1: Step 1 of Algorithm 7.2, using a pruning strategy.

Note that ܵଵ is simply the alignment set �. In practice, not all terms

will be used by Algorithm 7.2, making an exhaustive construction of �௞

unnecessary. Instead, a pruning strategy includes only those terms in �௞ that

cover some feature-vector in ܦ௙ ௙ܰ, since only those terms will actually be ׫

used (lines 2-3). Figure 7.1 illustrates the strategy. Assuming that ݇ = ʹ, there

are three possible ʹ-terms ܽ ܦܰܣ ܽ ,ܾ ܦܰܣ ܿ and ܾ ܦܰܣ ܿ, but only the two

shown in Figure 7.1 would get added to the supplemented set �ଶ. A

consequence is that if ݇ = ͵, then �ଷ = �ଶ. This is because there is no

feature-vector that is simultaneously covered by a term with three features

from �.

121 Many variants are also known to be NP-Complete (Carr et al., 2000).

115

Using the supplemented set �௞, lines 2-3 construct multimaps122 by

assigning each feature-vector in ܦ௙ a key in ܯ�, and with the elements in �௞

covering that feature-vector comprising its value set. ܯ� is then reversed to

yield ܯ .�′ܯ′ே is similarly constructed. Figure 7.2 demonstrates the key-value

reversal procedure, assuming ܦ௙ contains feature-vectors 1-5, covered as

shown in Figure 7.1. The time complexity of building ܯ′� and ܯ′ே is ܱሺ|�௞|(|ܦ௙|+| ௙ܰ|)ሻ.

Figure 7.2: Construction of multimaps and reversed multimaps.

In lines 5-6, each key is first scored by calculating the difference

between the fractions of covered duplicates and non-duplicates. A threshold

parameter, �, is used to remove the keys that have low scores. � is designed

to improve quality by removing those features from �௞ that either cover too

few duplicates, or cover too many non-duplicates (or both). The range of � is

[-1,1]. A value close to 1.0 would indicate that the user is confident about low

noise-levels in inputs ܦ, ܰ and the property alignment set ܳ, since high �

implies the existence of elements in �௞ that cover many positives and few

negatives. Since many keys in ܯ′� are removed by high �, this also leads to

computational savings. However, setting � too high (perhaps because of

misguided user confidence) could lead to excessive purging of ܯ′�, and

subsequent failure of Algorithm 7.2. A low � is safer, but may result in slower

run-times.

122 A multimap is a generalized version of a map, whereby a key can reference multiple values (i.e. a

value set).

116

Similar to the parameter ݐℎݏ݁ݎℎ in Algorithm 5.1, � can also be set in

self-tuning mode, with a low (but not too low) default value of 0.2. If

Algorithm 7.2 fails with a given value of �, it is indicative of � being too high. � is then decreased by a small number (e.g. 0.05) till Algorithm 7.2

successfully returns a blocking scheme. In one of the conducted experiments

(Section 7.2), the self-tuning methodology is found to lead to seamless

execution of Algorithm 7.2.

In line 7, Weighted Set Covering (W-SC) is performed using

Chvatal's approximation algorithm (Chvatal, 1979), with each key in ܯ′�

acting as a set, and the record pairs covered by all keys as elements of the

universe set ܷ.

For example, assuming that all features in �௞ in the keyset of ܯ′� in

Figure 7.2 have scores above �, ܷ = {ͳ,ʹ,͵,Ͷ,ͷ}. Note that only ܯ′� is

pruned (using �) and also, W-SC is performed only on ܯ .�′ܯ′ே only aids in

the score calculation (and subsequent pruning process) in line 5 and may be

safely purged from memory before line 7.

W-SC needs to find a subset of the ܯ′� keyset that covers all of ܷ

and with minimum total weight. For this reason, the weight of each set is the

negative of its calculated score. Given that sets chosen by W-SC actually

represent features in �௞, their disjunction is the desired ݇-DNF blocking

scheme (line 8).

As stated before, Set Covering (and also Weighted Set Covering) is

known to be an NP-Complete problem (Carr et al., 2000). Under plausible123

complexity assumptions, Chvatal's algorithm is currently the best-known

polynomial-time approximation for W-SC (Raz & Safra, 1997). Since

Algorithm 7.2 directly invokes Chvatal's algorithm as a subroutine, it is

conferred with similar theoretical guarantees.

In practice, setting ݇ to 1 has been shown to be a viable option even

on noisy test cases (Kejriwal & Miranker, 2015a). This is an important

computational benefit since |�௞| is exponential in ݇ in the worst-case.

123 ܲ ⊆ ܰܲ.

117

Training the Classifier

The feature-vectors sets ܦ௙ and ௙ܰ are also used for training a

supervised classifier that serves as a probabilistic link specification function

in the classification step. Note that, although the sets ܦ௙ and ௙ܰ are re-used

for training the classifier, it is theoretically possible to devise a new feature

space for this step. For example, a new floating-point valued feature ݊݅݁ݐݏ݊݁ݒ݁ܮ could be added, yielding |ܳ| new features124 for each record pair

in ܦ and ܰ. Indeed, a similar supplemental step was performed in Algorithm

7.2 for learning ݇-DNF blocking schemes, when ݇ > ͳ. In this chapter, the

binary feature-vectors output by Algorithm 7.1 are re-used for training the

classifier.

The primary reason for re-using the original feature-vectors is

computational. Each additional feature computation incurs cost |�| for each

tuple pair, and would additionally increase the run-time for training a

classifier. Re-using the feature vectors further implies that the feature

generator only needs to be run once and that in a shared-memory architecture,

both the DNF blocking scheme learner and the classifier trainer can access the

same feature-vectors, resulting in savings in both time and space.

As for the specific classifier trained on the feature-vectors, the noise

in the training sets, the sparsity of non-zero elements in individual feature-

vectors and the potential curse-of-dimensionality issue that would arise if � is

large compared to either ܦ or ܰ, suggest the use of a kernel-based maximum

margin classifier such as a Support Vector Machine or SVM (Joachims, 1999).

Previous studies in the instance matching community have validated this

empirically by showing that supervised SVM-based classifiers such as

FEBRL and MARLIN achieve state-of-the-art performance on standard

benchmarks (Bilenko & Mooney, 2003; Christen, 2008a; Köpcke, Thor &

Rahm, 2010).

In the learner, the training sets ܦ௙ and ௙ܰ are used to train an SVM

with a Radial Basis Function (RBF) kernel (Chang & Lin, 2011). A

polynomial kernel is not adapted because it requires the tuning of more hyper-

parameters, which is problematic given that the system only has a limited,

noisy number of training samples available to it. It is also known that a linear

124 One ݊݅݁ݐݏ݊݁ݒ݁ܮ calculation for each aligned pair in ܳ.

118

kernel (and for certain parameters, a sigmoid kernel) is a special case of the

RBF kernel, making it a reasonable choice (Hsu, Chang & Lin, 2003).

Finally, while more sophisticated machine learning classifiers can

always be used in this module instead of a kernel-based SVM, a user should

be aware of their typically higher training times. For example, multilayer

perceptron classifiers, which were recently shown to deliver slightly better

performance on average than SVMs, were simultaneously found to be almost

an order of magnitude slower on several test cases (Soru & Ngomo, 2014).

Blocking Method and Similarity Step

Given a blocking key (Definition 2.2), there has been extensive

research on how best to use the key in a blocking method (Christen, 2012b),

including a variety of methods specifically designed for heterogeneous

information spaces such as the Web of Linked Data (Papadakis, Ioannou,

Palpanas, Niederée & Nejdl, 2013). A promising blocking method is block

purging. The method works by using a given blocking key on each entity to

generate blocking key values (BKV). Entities are clustered into (possibly

overlapping) blocks, with each block uniquely identified by a BKV. To

control data skew, block purging eliminates all blocks that generate more pairs

than a threshold, designated in this dissertation as ݉ܽݏݎ݅ܽܲݔ. An algorithm

was proposed to calculate ݉ܽݏݎ݅ܽܲݔ automatically, but required a two-pass

approach over the generated blocks (Papadakis et al., 2013). In preliminary

experiments, manually determining the ݉ܽݏݎ݅ܽܲݔ threshold was found to

lead to significantly superior results over automatically determining ݉ܽݏݎ݅ܽܲݔ. Tuning ݉ܽݏݎ݅ܽܲݔ was also not found to be cumbersome; hence,

this approach is adopted in the current implementation. Practitioners can

customize this step per their needs without disrupting the remainder of the

system in Figure 1.5.

Finally, the classifier trained in the previous step is used on the

candidate set of instance pairs to output links probabilistically in the similarity

step. The score output by the SVM classifier is interpreted subjectively as the

classifier's belief in the instance pair being a duplicate. Note that the highest-

scoring pairs output by the classifier can be used to repeat parts of the learning

process in the hope of achieving better performance (typically through higher

119

recall). This self-training option (denoted as an iterative run) is described and

evaluated further in Section 7.2.3

7.2 Evaluations

Unlike evaluations in Chapters 5 and 6, this chapter contains three sets

of evaluations. The first evaluation concerns blocking, while the second and

third concern classification. Setup, results and discussion of each of these

evaluations will be described in individual sub-sections. The test suite used in

all evaluations is the domain-independent suite described in Section 5.3, and

summarized in Table 5.1.

7.2.1 Blocking

The goal of this experiment is to evaluate the heterogeneous DNF

blocking scheme learner (DNF-BSL).

Setup

First, a preliminary experiment is used to determine if advanced

blocking techniques are even warranted in real-world cases, or if a simple

token-based clustering approach suffices, by running the classic Canopies

algorithm on each of the ten test cases (McCallum, Nigam & Ungar, 2000).

Canopies was earlier described in Chapter 2, and also used in Chapter 4.

Canopies uses a threshold125, and an inexpensive distance metric126.

In the main experiment, Algorithm 7.2 is evaluated against the

trigrams-based Attribute Clustering (AC) baseline (Papadakis et al., 2013).

AC is considered to be a state-of-the-art unsupervised blocking approach for

schema-free data represented only as a set of attribute-value pairs. The method

extracts trigrams from each attribute value in the dataset, and then clusters

attributes by computing the overlap between trigram value-sets.

125 Technically, it uses two thresholds, but assigning them a common value was found to yield the best

empirical results in record linkage applications (Baxter, Christen & Churches, 2003).

126 Typically cosine similarity on TFIDF vectors (Cohen, 2000; Baxter et al., 2003).

120

The DNF-BSL in Algorithm 7.2 required setting two parameters ݇

and �. Since the algorithm is exponential in ݇ and previous experimental

results have not found large differences between the ݇ = ͳ and ݇ = ʹ settings

(Kejriwal & Miranker, 2015a), ݇ is set to 1. Similar to the parameter ݐℎݏ݁ݎℎ

in Chapter 5 evaluations (Section 5.3), � was set to a default value of 0.2 and

in self-tuning mode with a decrement of 0.05. In the majority of the cases,

self-tuning was not invoked. In two cases (Eprints-Rexa and Libraries), the

self-tuning was invoked and the value of � at which the algorithm succeeded

was 0.01. Either way, the algorithm was able to successfully output a DNF

blocking scheme. The blocking results are evaluated using the PC, RR and F-

Measure127 metrics described in Chapter 2.

Results and Discussion

Table 7.1 shows the results of the preliminary experiment. While

Canopies achieves over 90% F-Measure on four test cases, its general

performance exhibits much deviation. On Parks, the method fails completely,

achieving 100% RR and 0% PC128. Additionally, the algorithm was found to

run quite slowly on large datasets, and the threshold parameter had to be tuned

separately for each run. These results show that the performance of Canopies

is unpredictable for schema-free RDF data, and for domain-independent

applications129. Its average achieved F-Measure (67.87%) is also quite low

compared to state-of-the-art techniques, as the following experiment will

demonstrate.

Table 7.2 shows the results for the main experiment, where the

proposed DNF-BSL is evaluated against the Attribute Clustering baseline.

Both methods perform quite well generally, although the proposed system

outperforms the baseline on six of the test cases, and by 1.5% F-Measure on

average. An important difference between the systems’ performances is that
the proposed method tends to favor the RR metric over PC. While the F-

Measure treats PC and RR equally, blocking practitioners have argued that

127 PC stands for Pairs Completeness, RR for Reduction Ratio and F-Measure is the harmonic mean of

PC and RR. These metrics were also used for type alignment evaluations in Chapter 4.

128 100% PC and 0% RR can also be achieved if the threshold parameter is set high enough. Even with
exhaustive parameter sweeps, no other value sets were obtained except for these two extremes.

129 As described in Chapter 5, Parks and Libraries contained POI (Point of Location) data. The smaller

size of Parks, compared to Libraries, might account for performance degradation due to domain effects.

121

even small differences in RR can be consequential (Christen, 2012b). This is

because, as argued at length in Chapter 2, RR is measured over the full set of

entity pairs, which is a quadratic function and can number in the millions even

for moderately sized datasets. In contrast, PC is a linear function of the

matching entity pairs in the files, which are typically quite small in number.

By this argument, low values of RR can lead to the overall instance matching

task becoming intractable in a practical implementation. Table 7.2 shows that

the proposed DNF-BSL only achieves RR below 95% on two datasets (and

never below 90%), while the baseline can be more unpredictable (less than

95% RR on four datasets).

Table 7.1: Results of the preliminary blocking experiment. PC stands for Pairs Completeness,

and RR for Reduction Ratio. All values are percentages.

An advantage of Attribute Clustering is that, unlike the

heterogeneous DNF-BSL, it does not require training samples or a space of

indexing functions (Papadakis et al., 2013). Its expressiveness over other

non-adaptive token-based techniques such as Canopies arises because it

extracts trigram representations from each of the tokens. The results in Table

7.2 may thus also be interpreted as favoring Attribute Clustering in a

MapReduce-based implementation (Chapter 8). In serial implementations,

122

the adaptiveness of the DNF-BSL gives the method a small performance

advantage.

Table 7.2: Results of the main blocking experiment. PC stands for Pairs Completeness, RR for

Reduction Ratio, and FM for F-Measure. All values are percentages.

7.2.2 Similarity (non-iterative run)

This experiment evaluates three Support Vector Machines

(SVMs)130 against each other, with the goal of determining how the degree

of supervision (the number of samples an SVM is trained on) and noise

(incorrect labeling of training samples) affect overall classification

performance. The SVMs are also evaluated against an unsupervised baseline

method that combines Locality Sensitive Hashing (LSH) and Expectation

Maximization (EM) (Winkler, 2002; Datar, Immorlica, Indyk & Mirrokni,

2004), which have been successfully applied to both instance and ontology

matching in the recent past (Kim & Lee, 2010; Duan et al., 2012).

130 All SVMs in this paper use RBF (Radial Basis Function) kernels, for which an efficient

implementation may be found in the LibSVM library (Chang & Lin, 2011).

123

Setup

As a first step, the candidate set of pairs for the classification step is

generated using the blocking approach that had the higher F-Measure in the

previous experiment (for a particular test case). An SVM is trained using the

500 duplicates and non-duplicates generated by the proposed TSG. Let this

SVM be denoted as Unsupervised131, since the training sets are automatically

generated. Two supervised SVMs are trained on 10% and 50% of the ground-

truth. These perfectly labeled samples are used for both training and cross-

validation, with the rest of the ground-truth not seen by the classifier till actual

testing time to avoid bias. The SVM performances are compared using

precision-recall graphs. The supervised SVMs are expected to illustrate the

limits of the unsupervised system by showing how the numbers (and levels of

noise) in the samples affect the training of the SVMs in the described feature

space.

The alternate unsupervised baseline is set up as an Expectation

Maximization (EM) clustering procedure as follows. First, to improve

robustness and reduce processing times, the original feature space is reduced

by computing, for each feature vector in the candidate set, seven hashes132

using an open-source Locality Sensitive Hashing (LSH) package133. Thus, a

new feature-vectors file was produced, where each vector is represented by

seven real numbers. Appropriately formatted, this file was then input to the

EM algorithm implemented in the Weka134 machine learning package. To

maximize performance, all vectors were probabilistically clustered into two

clusters. The final step was to map the two clusters to classes (that is,

duplicates or non-duplicates). This was achieved by using a simple but

effective heuristic: the larger cluster was considered to map to the non-

duplicates class. This mapping was found to maximize this baseline's metrics.

As the alternate baseline is independent of the noisy training set, it tests how

well simple heuristics or traditional techniques (such as EM) fare on roughly

schema-free instance matching relevant to the Linked Data ecosystem.

131 The label is a misnomer and must be interpreted with care, since even an ‘unsupervised’ SVM has to
be trained. Thus, the label refers to the way the training set was acquired, not the classifier itself.
132 CosineHash, three variants of EuclideanHash, and three variants of CityBlockHash.

133 https://github.com/JorenSix/TarsosLSH

134 http://www.cs.waikato.ac.nz/ml/weka/

124

Figure 7.3 shows the results for the cases where the highest achieved

F-Measure (for any of the systems) was greater than 60%. On four test cases

(Libraries, Restaurants and both Persons cases), there is no statistically

significant difference between either of the supervised systems. On all these

datasets, the SVM is able to adapt to the unseen data without much

supervision. The IIMB-059 illustrates that this is not necessarily the case for

every test case. The overall results also show that the SVM is able to adapt

even when instances from multiple types are present. In Figure 7.3, only the

Libraries and IM-Similarity test cases have instances from a single type.

Results and Discussion

Although the unsupervised SVM does not generally perform as well

as the supervised SVMs, it is still competitive on three of the test cases

(Persons 1, Restaurants and Libraries) over a particular range of precision

and recall. On IIMB-059, Unsupervised outperforms Supervised 10% in terms

of the highest F-Measure. An iterative approach is explored in the next

experiment to improve the unsupervised SVM performance on some of these

test cases.

Figure 7.4 illustrates the four test cases for which no SVM manages

to achieve a high F-Measure. In all cases, the unsupervised SVM performs at

least as well as (and on Video Game and Eprints-Rexa, outperforms) one of

the supervised SVMs. A closer look at the results showed that all the SVMs

were returning many false positives for these cases. An obvious hypothesis is

that the SVMs were overfitting the data on these four test cases.

To study this hypothesis, it is instructive to compare the graphs in

Figures 7.3 and 7.4 with the results of training set generation (TSG) in Section

5.3. On some cases, particularly Parks, Video Game and even Eprints-Rexa,

the TSG outperforms even the supervised SVMs by a considerable margin.

This is most apparent in the Video Game case, where the Supervised 50%

SVM performs the worst. Automatically determining when to choose the TSG

over the adaptive classifier is an important issue for future work, and directly

related to the recent research interest in self-configuring systems (Han, Lee &

Crespi, 2014). At least one other instance matching study has also made a

125

similar finding; namely, that an adaptive classifier is not a silver bullet135 for

every instance matching test case (Soru & Ngomo, 2014).

Figure 7.3: SVM results for the test cases where highest-achieved F-Measure was over 60%.

135 The study showed that, on a third of the employed test cases, all tested supervised classifiers

(including multilayer perceptron, SVM and logistic regression classifiers) achieved less than 50% F-

Measure (see page 3 of Soru & Ngomo (2014)).

126

Figure 7.4: SVM results for the test cases where highest-achieved F-Measure was below 60%.

Finally, the alternate unsupervised baseline is outperformed by all

methods on the majority of the cases. There are only two exceptions: low

recall levels in the IM-Similarity test case (where it is briefly competitive with

all methods), and the IIMB-062 test case, where it outperforms the Supervised

10% SVM. The results show, quite unambiguously, that simple heuristics-

based, distance-based and clustering-based techniques are not adequate by

themselves, or even in simple combinations, for noisy schema-free RDF data.

This conclusion is similar to the one in the previous experiment on blocking,

where the performance of Canopies was found to be inadequate. This may

explain why the instance matching literature covering these methods makes

strong assumptions about the underlying datasets, including existence of

structure and meta-data (e.g. ontologies) (Winkler, 1993; Kim & Lee, 2010;

Duan et al., 2012). Adapting these traditional methods so that they perform

well on roughly schema-free Linked Data is left for future work.

127

7.2.3 Similarity (iterative run)

This experiment explores an iterative approach for improving the

performance of the unsupervised SVM and the alternate approach in the

previous experiment. At the end of Section 7.1, the possibility was mentioned

that the highest-confidence samples output by the classifier can be used to re-

learn certain functions. In principle, the samples can be used to re-learn both

the blocking scheme and the SVM classifier. A disadvantage of this naïve re-

learning is that it does not take into account (1) the expense of the blocking

method, and (2) the high performance achieved by the DNF-BSL using just

the generated training set. A better cost-gain tradeoff is achieved by only re-

training the SVM classifier. This section evaluated this tradeoff.

Setup

The previous experiment showed that, in at least five test cases (see

the graphs for Persons 1, Persons 2, Restaurants, IM-Similarity and Libraries

in Figure 7.3), the SVM trained on 10% of the ground-truth was able to

achieve better performance than the unsupervised SVM, despite being trained

on fewer samples (but without noise). It would thus seem that in these cases,

the noise (more than the size of the training set) dictates SVM performance.

In this experiment, this hypothesis is explored and it is shown that the effects

of this noise can be accounted for, while still keeping the system unsupervised,

if an iterative approach is adopted. Namely, the SVM re-trains itself on a small

set of top-scoring duplicates initially output by it, after which the classification

step is re-run136. Specifically, the 50 most confident samples output by the

unsupervised SVM are first permuted to obtain 50 non-duplicates (line 9 of

Algorithm 5.1), which are together used to re-train the SVM. A much smaller

(re-)training set than that137 used in the first pass is used, to skew the quality-

representation tradeoff in favor of quality. The expectation is that, in the cases

where Supervised 10% outperformed Unsupervised in the previous

experiment, the gap between the two systems will significantly narrow, if it is

not eliminated altogether. On the datasets where representation mattered more

136 That is, the same candidate set from the previous experiment (for each of the test cases) is re-

classified.

137 This number was 500, as described in the evaluations in Chapter 6.

128

than quality, the performance is expected to decline, an example being IIMB-

062 (Figure 7.4).

In order to test the post-iteration performance of the alternate baseline,

the ݃݊݅ݎ݁ݐݏݑ݈ܥܸܽ݅݊݋݅ݐ݂ܽܿ݅݅ݏݏ݈ܽܥ facility in the latest version of Weka is

used. This facility allows a practitioner to use labeled instances to inform the

clustering of unseen data. Since only 100 labeled samples (50 duplicates and

50 non-duplicates138) are being used, the clustering is not expected to be

radically different. Other details on how the clustering was conducted and

instances were classified can be found in the Setup sub-section of Section

7.2.2.

Results and Discussion

Figures 7.5 and 7.6 compare the two unsupervised runs (before and

after iteration). In six of the ten test cases (Figure 7.5), the highest achieved

F-Measure improved after iteration. After iteration, the performance

difference between the unsupervised system and both supervised systems

(from the previous experiment) on Persons 1 narrows so that there is no

statistically significant difference between the three systems (the post-

iteration SVM and the supervised SVMs from the previous experiment). Near-

perfect results are observed, showing that (on Persons 1) training set noise had

a more significant impact on SVM performance than training set size.

The opposite is true for both the IIMB datasets, and more surprisingly,

Persons 2. The results on Persons 2 were surprising because, as stated earlier,

Supervised 10% achieved excellent performance on it. In further experiments,

the SVM was re-trained on larger sample numbers (ranging from 10-400), to

test if the number of samples predominantly affects performance. Even with

this tuning, the post-iteration SVM never outperformed the pre-iteration SVM

in the conducted experiments. It is conceivable the primary cause behind the

post-iteration SVM's performance decline is the low precision of the pre-

iteration SVM on Persons 2. The SVM is not able to compensate for the high

levels of noise even in the most confident samples retrieved by the pre-

iteration SVM on Persons 2, regardless of training set size. This shows that

138 There is a small caveat: for the alternate baseline, the 50 duplicates were not permuted to yield 50

non-duplicates. Instead, the 50 lowest-ranked samples were taken from the probabilistically scored

candidate set in the experiment in Section 7.2.2.

129

the iterative procedure is not always successful; in particular, it can lead to a

decline in overall performance if the original first-pass SVM outputs low-

quality results to begin with.

Figure 7.5: Pre-iteration SVM, post-iteration SVM and alternate baseline results for the six

cases where an improvement in highest-measured F-Measure performance for post-iteration SVM was

observed.

130

Figure 7.6: Pre-iteration SVM, post-iteration SVM and alternate baseline results for the four

cases where an improvement in highest-measured F-Measure performance for post-iteration SVM was

not observed.

Figure 7.7: Pre-iteration and post-iteration SVM results for IIMB-062 when re-training on

the top 200 (rather than the top 50) samples. Improvement of the latter over the former is statistically

significant.

131

On the IIMB datasets, the post-iteration curves resemble those of

Supervised 10% from the previous experiment. On IIMB-062 in particular,

the curve ‘collapses’, showing that the number of samples is the determining
factor on performance. To test this claim, the SVM was re-trained on the top

200 samples instead of the top 50 samples. Figure 7.7 shows the results of

this supplementary experiment, where the post-iteration SVM now

outperforms the original SVM and also Supervised 50% at low recall levels

(not shown in the figure).

On IM-Similarity and Parks, the improvements are quite drastic,

with the post-iteration unsupervised system effectively outperforming both

supervised systems from the previous run. On these test cases, the iteration

achieves its maximum utility. On the other two cases, Eprints-Rexa and

Video Game, iteration also improves performance but by a near-

indistinguishable margin.

The iteration did not improve (or otherwise modify) the clustering

(i.e. the alternate baseline) procedure at all; hence, the post-iteration and pre-

iteration performance of the unsupervised LSH are coincidental. This can be

attributed to the relative stability of EM, especially given the very small

labeled set that was provided to the system. Furthermore, the distinguishing

characteristics (that is, different feature values) of individual instances in the

training set are neutralized by the LSH feature-reducing computations and

provide less information to the EM procedure than is provided to the SVMs.

The net result is that there is no improvement in alternate baseline

performance. This finding also implies that the baseline may not be

amenable to techniques such as active learning where a user is continuously

trying to improve the system through incremental labeling (Settles, 2010).

It is also worthwhile considering the benefits of further iterations. In

alternate work, not covered in this chapter, it was shown that the maximal

benefits of such iterations tend to be realized in the first three iterations, with

major gains in the first iteration itself (Kejriwal & Miranker, 2015b). At least

for some test cases, single-run iterative procedures suggest an attractive, and

efficient, methodology to bettering unsupervised instance matching

performance.

133

Chapter 8: Scalability

This chapter covers the scalability of the described system using

MapReduce (Dean & Ghemawat, 2008). First, the algorithms in Chapters 4-7

are summarized in terms of their inputs and outputs in Section 8.1 This input-

output perspective provides clarity on why the scaling of the system is not

expected to lead to major revisions in the presentation thus far. This is in

contrast to the current state-of-the-art in the literature, where scalability and

automation were largely considered at odds with each other (Chapter 3).

8.1 Summary of Algorithms

Component Input Output

Type Alignment

(Algorithm 5.1)

Two (multi-type) RDF graphs ܩଵ

and ܩଶ
Type Alignment Θ

Training Set

Generator

(Algorithm 6.1)

Two (single-type) property tables ଵܲ and ଶܲ

Sets ܦ and ܰ of

positive and

negative training

sets resp.

Property Alignment

(Algorithm 7.1)

Sets ܦ and ܰ of positive and

negative training sets resp.

Property Alignment ܳ

Other Learning

Procedures

(Algorithms 8.1,

8.2)

Sets ܦ and ܰ of positive and

negative training sets resp.,

Property Alignment ܳ

Property-specific

DNF blocking

scheme ܤ, machine

learning classifier ܥ

Blocking and

Similarity

Property-specific DNF blocking

scheme ܤ, machine learning

classifier ܥ, Property Tables ଵܲ and ଶܲ

:sameAs

declarations (i.e.

duplicates)

Table 8.1: An input-output summary of selected algorithms described heretofore.

134

Table 8.1 summarizes the main algorithms described in Chapters 4-7

from the perspective of primary inputs139 and outputs. From this input-output

perspective, algorithms fall within two categories. Algorithms in the first

category take as input the full data, and are most amenable to parallelism. The

type alignment algorithm, for example, needs to access all data in order to

build the type documents, construct a type matrix and derive type alignment

pairs. Similarly, the training set generator and the blocker and classifier need

to access all the data to perform their computations140.

 Algorithms in the second category, mainly comprising the learning

procedures and property alignment algorithm, do not need to access the full

dataset. Instead, they accept as input the outputs of earlier algorithms (e.g. the

training set generator). Because their inputs are of modest size, the algorithms

can be exactly re-implemented in a parallel setting using a convenient

technique outlined in the next section.

8.2 Motivation and Use-Cases

The challenges of scalable instance matching are different from those

of applications that are inherently large-scale (e.g. high-fidelity physics

simulations). Such applications tend to involve numerical and scientific data,

and arguably fall within the auspices of high-performance computing, rather

than Artificial Intelligence research (Schroeder & Gibson, 2010). In more

traditional data management, set similarity joins operate on similar principles.

Although such joins accept large-scale inputs, a set similarity function (e.g. ݀ݎܽܿܿܽܬ) and a threshold is assumed, and the output is necessarily expected

to be both complete and consistent (Vernica, Carey & Li, 2010; Metwally &

Faloutsos, 2012; Das Sharma, He & Chaudhuri, 2014).

The preceding chapters showed that a full instance matching pipeline

is more complex, and includes a wide variety of algorithms. For example,

Table 8.1 lists the algorithms developed specifically within this dissertation.

A survey of instance matching literature that explicitly involves parallel or

139 Primary inputs are the principal data units on which these algorithms operate. For the sake of

discussion, parameters (e.g. ݐℎݏ݁ݎℎ in Algorithm 5.1) are considered secondary inputs.

140 Although these algorithms only accept single-typed (or multiple different-domain typed) property

tables as input within a given execution, all the data must still be processed, as the algorithm is executed

for each aligned type pair. Like blocking, type alignment only serves as an efficiency constraint in this

setting.

135

distributed processing by virtue of fulfilling the scalability requirement shows

that a large-scale instance matching application involves medium-scale

inputs141. Some of these efforts were briefly reviewed in Chapter 3.

To recap the discussion in Section 2.4.1, the unavoidable pairwise

nature of instance matching, even with blocking, leads to large intermediate

outputs (i.e. the generated candidate set). For example, given two files with

20,000 and 30,000 entities respectively, the cardinality of the exhaustive set

(i.e. the set of all possible instance pairs) is 600 million. Even with a reduction

ratio of 99%, currently only achievable by a state-of-the-art blocking

algorithm (Chapter 7), over 6 million entity pair candidates have to be

distributed across nodes and evaluated by a link specification function.

Because of the class imbalance problem in real-world data, the number of

duplicates is typically quite small (sub-linear in the number of entities). It is

precisely because of duplicates sparsity that blocking methods are able to

reduce the exhaustive space without causing performance degradation

(Christen, 2012b). Regardless, even the best currently known blocking

methods go only so far, especially when the data is noisy or the distribution of

duplicates is non-uniform (Christen, 2012b).

Another motivation stems from an analysis of current domain-

independent datasets on Linked Open Data, for which the system was

primarily designed. Some of the largest datasets on Linked Open Data fall

within the medium-scale category, as putatively defined in this dissertation.

To cite some statistics from a well-known work, the English versions of two

influential knowledge bases, DBpedia and Yago, both contain about 3 million

English entities (Suchanek, Abiteboul & Senellart, 2011). Wikidata142,

another influential knowledge base, currently contains about 5 million English

entities. Other knowledge bases (e.g. the New York Times ontology143) on

Linked Open Data are far smaller. These statistics show that achieving scale

on medium-scale datasets (using small clusters, for reasons outlined below) is

a well-motivated problem at the present moment.

In a shared-nothing paradigm like MapReduce (Dean & Ghemawat,

2008), the pairs in the candidate set are partitioned and split among the various

141 This phenomenon was detailed in Section 2.4.1, which the interested reader may want to review at

this juncture. Therein, a small-scale dataset was putatively defined to contain 100,000 entities or fewer,
and a medium-scale dataset was defined to contain between 100,000-5 million entities.
142 https://www.wikidata.org/wiki/Wikidata:Statistics/Wikipedia

143 http://data.nytimes.com/

136

nodes. Thus, a third motivation is that the number of required nodes must grow

quadratically in the input size for a constant reduction ratio and constant

performance. Because practical and cost-effective scaling must exhibit near-

linear time performance, it is important to achieve both a high reduction ratio

and successfully deploy algorithms on a relatively small cluster144 (between

16-60 cores) on current large-scale instance matching applications. The

algorithms and evaluations in this section are designed with these motivations

in mind.

8.3 MapReduce Implementations

The MapReduce paradigm145 was described as the framework of

choice for scaling the schematic in Figure 1.5 (Dean & Ghemawat, 2008).

MapReduce was designed to be implemented on commodity hardware, as it

relies on dynamic master-slave principles to achieve a high degree of data

locality and fault tolerance. It has been widely adopted since its introduction

(Dean & Ghemawat, 2008). To the best of our knowledge, all the major cloud

vendors include an implementation of MapReduce as a service offering, with

customers given the ability to ‘spin up’ and ‘tear down’ MapReduce clusters
on demand. At the time of writing, new higher-level services continue to be

implemented on top of the basic (sometimes, modified) MapReduce

framework, Spark being a good example (Zaharia, Chowdhury, Franklin,

Shenker & Stoica, 2010).

To be widely applicable, all implementations herein only rely on basic

MapReduce functionality. To this end, all MapReduce experimental runs in

this chapter were executed in the commercial Microsoft Azure cloud platform,

using MapReduce-based HDInsight clusters146, with post-execution analyses

done locally on a serial machine. A3 nodes were homogeneously used to

spawn clusters. A3 nodes contain 4 cores, 7 GB of RAM, and 285 GB disk

space. In the configuration adopted for the experiments described in this

chapter, two nodes were always used for the master node, while the number

144 In an era of cheap computational power, this requirement might seem odd. The reason is that Linked

Open Data continues to grow. For a current system to be sustainable even in the immediate future,

quadratic growth in cluster size (e.g. scaling from 16-60 cores to 100-1000 cores) must continue to be
feasible and affordable for a community that aligns itself with Open Data initiatives.

145 The paradigm is briefly described in Appendix A.

146 https://azure.microsoft.com/en-us/pricing/details/hdinsight/

137

of data (i.e. slave) nodes was varied from 4-10. In the evaluations described

subsequently in Sections 8.3.1-8.3.4, the term ‘node’ is used to refer to a data
node. Note that this cluster range meets a key requirement laid out in Section

8.2 (the importance of using small clusters containing 10-60 cores). In the

following experiments, the benefits of scaling are shown to be realized well

within this range for all the datasets.

To assess the scalability of the various modules, wall-clock times are

recorded and used for run-times. Where relevant, both map and reduce times

(and also the overall run-time) are reported. The overall run-time does not

necessarily equal the sum of map and reduce times, since reducers are known

to commence before the map stage of a MapReduce algorithm has completely

terminated.

For clarity of exposition, the MapReduce algorithms, where possible,

are described by way of illustrations, rather than technical pseudocode. One

reason for taking this liberty is that, after adjusting for the specifics of the

MapReduce paradigm, much of the pseudocode repeats what has already been

presented in prior chapters. The illustrations are expected to provide a more

intuitive framework in which to assess system scalability.

Finally, the knowledge graphs input to the system are assumed to be

serialized in the NoSQL format that was described and illustrated in Figure

2.1d.

8.3.1 Type Alignment

In Chapter 4, two applications of type alignment were described. The

first application, alignment of non-interlinked types147, primarily concerns

data integration, with real-world use-cases limited to small datasets (and serial

settings). The second application concerns the alignment of interlinked types

and is most useful when considering cross-domain knowledge graphs (e.g.

DBpedia) as input. Such graphs have many hundreds of types, and millions of

entities, and a scalable solution is warranted. The algorithmic principles

behind the approach are not dissimilar to those introduced in Chapter 4

(Algorithm 4.1). Briefly, a type document is constructed for each type, after

147 An analogy used to explain the first application in Chapter 5 was that of matching semantically

related files between two directories.

138

which a type matrix is constructed by computing a similarity score between

each pair of type documents. Computations (e.g. the max. Hungarian

algorithm) are executed on the type matrix to yield a type alignment, defined

as a set of semantically aligned type pairs.

Figure 8.1: Illustration of the MapReduce-based algorithm for scalable type alignment.

The stages of a MapReduce algorithm for the steps above are

illustrated in Figure 8.1. The algorithm consists of three chained148

MapReduce jobs. An instance in each input knowledge graph (KG) is

serialized in a NoSQL data structure (Figure 2.1d) containing the same

information set as a row in a logical property table encoding (Kejriwal &

Miranker, 2015a). First, a MapReduce job is run separately for each KG (say ܣ and ܤ), where a mapper takes an instance ܫ஺ (א as input, converts it into (ܣ

a set of tokens using some standard delimiters (e.g. punctuations) and emits a

key-value pair of the form (ܶ݁݌ݕሺܫ஺ሻ-݊݁݇݋ݐ௜, ͳ), where ܶ݁݌ݕሺܫ஺ሻ is the type

of instance ܫ஺ and ݊݁݇݋ݐ௜ is a token from the information set of the instance.

If a token occurs multiple times within an instance, it is still counted only

once, since only type-token statistics need to be collected. The reducer simply

counts all type-tokens and emits an intermediate output visualized in Figure

8.1.

148 That is, the outputs of a job coincide with the inputs of the next job in the chain. In practice, chaining

jobs can lead to significant reduction in individual job start-up times.

139

In the second MapReduce job, all the type-tokens, with their counts,

are consolidated in a single line149. Data skew was found to be a significant

problem in the original run of the second MapReduce job. To avoid skew, the

mapper in the second MapReduce job did not emit tokens that had count less

than 5; in the reducer, only the first 30,000 unique tokens emitted by a mapper

(per type) were output. Formally, only these tokens constitute the contents of

the type document representing that type.

An advantage of this construction is that the type documents are quite

compact. The cross-domain knowledge graph (KG), Freebase, which is just

slightly under 400 GB in uncompressed form, yielded a final type-token

output of less than 150 MB upon execution of these first two MapReduce jobs.

Due to the compactness, types between two KGs could be matched (by

constructing a type matrix and performing the requisite computations), using

the type documents, in a single reducer. Namely, in a third MapReduce job,

each type document is assigned a single key, guaranteeing that all documents

arrive at (exactly) one reducer. The construction of the type matrix (through

pairwise similarity computations) and subsequent processing on the matrix are

all performed at that one reducer150. The final type alignment is output to the

distributed file system.

Following earlier results in Chapter 4, two standard set-based

similarity measures (normalized in the [0,1] range) were used: ݀ݎܽܿܿܽܬ and 151ܨܶ ݃݋ܮ. Formulae for these measures, and a rationale for why they are

sufficient, were provided in Chapter 4.

Intuitively, the higher the similarity score according to a given

measure, the more likely it is that the corresponding types are aligned. Using

a threshold, which can be varied to trade-off various metrics against each

other, a curve can be plotted to visualize empirical type alignment

performance against a ground-truth.

149 Just like with the first MapReduce job, the second job is executed separately for each knowledge
graph.
150 Though rarely warranted, some load balancing is possible in more extreme situations since the type

matrix construction is equivalent to performing all-pairs set similarity joins (Vernica et al., 2010).

151 Log-Term Frequency. In supplementary work, more measures were also tried (e.g. a generalized

version of ݀ݎܽܿܿܽܬ); the results are qualitatively similar.

140

Evaluations

The MapReduce-based type alignment module is assessed by its

performance on the second application of type alignment, which concerns

alignment of interlinked types. In recent work, this application has been tested

on two knowledge graphs, DBpedia and Freebase (Duan et al., 2012). A

similar methodology is followed herein.

The evaluation was set up as follows. First, the publicly available N-

Triples files containing DBpedia and Freebase facts were downloaded152 and

stored in Microsoft Azure cloud storage. For DBpedia, two separate triples

files had to be downloaded and merged into a single file. The first of these

described instance type information153, while the second described instance

properties (facts). There were 3.279 million unique subjects, 67.1 million

unique triples, and 417 unique types in the merged file. For Freebase, only

one triples file was available and contained 121.629 million unique subjects,

3.023 billion unique triples and 4811 unique types.

A third-party file describing approximately 3.3 million :sameAs links

between the instances was also downloaded and used as the ground-truth,

following similar principles and arguments as those outlined in Chapter 4.

Namely, type alignment was treated akin to blocking, and evaluated on the

usual metrics of Pairs Completeness or PC (measuring coverage of instance

pairs by the type alignment) and Reduction Ratio or RR (measuring efficiency

savings).

Unlike the first application of type alignment, assumed in Chapter 4,

one-one type alignments can no longer be assumed in the second type

alignment application. Instead, a threshold-based approach is adopted. Given

a threshold that varies from 0.0 to 1.0, a tradeoff between PC and RR can be

plotted by aligning any type pair < ௙௥௘௘௕௔௦௘݁݌ݕݐ , ௗ௕௣௘ௗ௜௔݁݌ݕݐ > if the

similarity score between the two types exceeds the threshold. This approach

is both simple, and places no restriction on alignment cardinality.

A MapReduce-based serialization algorithm was executed to convert

the N-Triples files to the NoSQL format that is required by all MapReduce

algorithms described in this chapter, including Algorithm 8.1. For all

152 The versions available in early August, 2015, were downloaded. To the best of our knowledge,

Freebase has not been updated since then, but DBpedia continues to be updated annually.

153 Only dbpedia.org/ontology types were considered.

141

MapReduce algorithms, between 6 and 15 quad-core A3 data nodes154 were

used. The total serialization times for DBpedia and Freebase were 14 minutes

and 4.5 hours respectively.

Once the data was serialized, the type alignment algorithms were

executed for both DBpedia and Freebase, the respective run-times being 13

minutes and 6 hours for the first two jobs in the chained sequence shown in

Figure 8.1. The data was then downloaded to a serial machine for further

analysis. First, we verified that the data output by the second MapReduce job

in the chain was compact (i.e. <1 GB) in order to justify the design decision

in making the third MapReduce job in the chain inherently serial (by using a

single key to route all elements to a single reducer, then constructing, and

performing computations on, a type matrix within that reducer). The analysis

showed that the Freebase output was less than 150 MB and the DBpedia

output, less than 10 MB. Considering that Freebase is currently the world’s
largest-known encyclopedic knowledge graph, and is over 400 GB in

uncompressed N-Triples form, this is a significant reduction, and provides

support for the design decision.

Figure 8.2: Results of the MapReduce-based type alignment algorithm on DBpedia and

Freebase, using blocking metrics. (a) measures Pairs Completeness vs. Reduction Ratio by varying a

threshold, while in (b), the highest-obtained F-measures are recorded, along with the corresponding values

of Pairs Completeness and Reduction Ratio at which the F-measure was obtained.

Figure 8.2 illustrates the quality of type alignment itself in terms of

the blocking metrics. Figure 8.2a shows that the ݀ݎܽܿܿܽܬ measure is not as

154 These nodes were described at the beginning of Section 8.3.

142

effective as ܨܶ ݃݋ܮ, which achieves the highest F-measure at 45.06%, with

corresponding PC at 32.36%, and corresponding RR at 74.17%.

It is worthwhile comparing these numbers to those obtained in

Chapter 4. Even at low RR, the maximum coverage obtained by the current

system is only in the range of 40%, a worryingly low number. While a

complete post-mortem analysis of this issue is beyond the scope of this

dissertation, we note that an important cause for such poor coverage arises

from noisy type declarations in Freebase and DBpedia. At least one other

paper has noted a similar finding (Duan et al., 2012). Another minor reason is

that a fraction of instances in DBpedia and Freebase lack type information,

and would be ignored by the type alignment system.

Indirectly, these results show that data integration practitioners are

rightfully concerned about not using these cross-domain graphs in mainstream

applications. A promising avenue of future research is to automatically deduce

and flag noisy type declarations, along with inferring type information for

instances lacking type information (Section 9.2.1). On this latter issue, some

progress has already been made in the literature by utilizing hierarchical

clustering approaches (Ma, Tran & Bicer, 2013).

8.3.2 Training Set Generator (TSG)

A scalable training set generator (TSG) is implemented using two

separate (i.e. unchained) MapReduce job sequences. Recall that the

pseudocode of the original TSG algorithm was provided in Algorithm 5.1. In

summary, the algorithm first located all instance pairs, using an efficient

retrieval algorithm (Cohen, 2000), having a ܨܦܫܨܶ݃݋ܮ score above a

provided threshold parameter ݐℎݏ݁ݎℎ. The top-݊ pairs (with ݊ also specified

as a parameter) were output in ranked order according to their ݀ݎܽܿܿܽܬ score,

under the constraint that an instance occurs at most once in the entire output

set (the so-called uniqueness constraint). Non-duplicates were generated by

permuting this set. Note that the TSG (and all algorithms following it) has to

be executed separately for each aligned type pair, unless the types belong to

different domains155.

155 Earlier evaluations showed that, if this were the case, type alignment was usually unnecessary and

the TSG (and other algorithms) were able to implicitly differentiate between instances of incompatible

types.

143

Figure 8.3: Illustration of the chained MapReduce-based algorithm for generating token

Inverse Document Frequency (IDF) statistics.

To replicate the serial procedure in MapReduce, a preprocessing step

is required to first generate an inverse document frequency (IDF) file. This

file records the IDF156 for each token as the quantity ்௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௜௡௦௧௔௡௖௘௦ே௨௠௕௘௥ ௢௙ ௜௡௦௧௔௡௖௘௦ ௖௢௡௧௔௜௡௜௡௚ ௧ℎ௘ ௧௢௞௘௡. While the division cannot be carried

out in a single MapReduce job, the numerator (which is constant for a given

type) and the denominator can be computed in parallel. The division is then

performed in a MapReduce job chained to the first job (Figure 8.3).

156 Per this interpretation, a ‘document’ is the set of tokens comprising each instance (line 3 in

Algorithm 5.1). The property (or column in the property table) from which this token was derived is

irrelevant.

144

Figure 8.4: Illustration of the MapReduce-based Training Set Generator.

Figure 8.4 illustrates the primary TSG algorithm that accepts the

generated IDF tables and the two single-type property tables (serialized using

NoSQL data structures), and outputs a heuristically generated training set. The

first MapReduce job is described as follows. In the mapper, the algorithm first

checks whether the input is a row from one of the property tables or from the

IDF tables. If the input is from an IDF table (of the form < ,݊݁݇݋ݐ ݂݅݀ ݐ݊ݑ݋ܿ− > the mapper emits ݊݁݇݋ݐ as a key (with a special symbol ݏ as the

value) if ݊݁݇݋ݐ has ݂݅݀ − above a pre-specified IDF threshold. The ݐ݊ݑ݋ܿ

goal of this step is to reduce potential data skew by not transmitting tokens

that are unlikely to be of much value. If the input is instead from a property

table (i.e. a NoSQL object representing an instance), the instance ݎ is

tokenized into a bag of tokens ܾܽ݃ሺݎሻ. Each (unique) token serves as an

emitted key, with the corresponding value being the pair <ݐ݆ܾܿ݁ݑݏሺݎሻ, ܾܽ݃ሺݎሻ >157. The mapper is identical to the mapper in the first

MapReduce job in Figure 8.3, except that instead of a number, the entire bag

of tokens (along with the subject of the instance) is emitted as a value. For a

given value ݒ, the symbols ݒ௦௨௕௝௘௖௧ and ݒ௕௔௚ are used to denote its

corresponding ݐ݆ܾܿ݁ݑݏ and ܾܽ݃ elements.

In the reducer, several measures are adopted to reduce potential data

skew and increase training set quality. For completeness, these measures are

157 Designating the token as ݊݁݇݋ݐ, the emitted unit would be of the form < ,݊݁݇݋ݐ ,ሻݎሺݐ݆ܾܿ݁ݑݏ> ܾܽ݃ሺݎሻ .ب

145

reproduced in the reducer pseudocode in Algorithm 8.1. The knowledge

graphs that are input to the TSG, as NoSQL property tables, are designated

using the symbols ܩܭ஺ and ܩܭ஻. First, the reducer checks if the value is the

special symbol ݏ. It is important for the reducer to encounter this symbol, for

the assumption otherwise is that the token that serves as the key of the reducer

is too common in the dataset. Further processing will not take place (line 6).

Otherwise, using the ݐ݆ܾܿ݁ݑݏ of the value, the reducer identifies the value as

representing an instance from either ܩܭ஺ or ܩܭ஻ and places it in ܣ or ܤ

respectively.

Input: Key ݊݁݇݋ݐ with associated set of ݏ݁ݑ݈ܽݒ := < ,ଵݒ … , ௡ݒ >
Threshold parameters ܶ݁݃ݎݑ݌ℎݏ݁ݎℎ, ,ℎݏ݁ݎℎܶܨܦܫܨܶ݃݋ܮ ℎݏ݁ݎℎܶ݀ݎܽܿܿܽܬ

Special symbol ݏ

Output: Key-value pairs of the form ا ,ଵݐ݆ܾܿ݁ݑݏ ଶݐ݆ܾܿ݁ݑݏ >, ݁ݎ݋ܿܵ݀ݎܽܿܿܽܬ >

Steps:

1. Initialize empty sets ܤ ,ܣ and ܦ’
2. Initialize Boolean flag ݂݅݀ܲݐ݊݁ݏ݁ݎ ∶= ݁ݏ݈ܽܨ

3. while ݏ݁ݑ݈ܽݒ are streaming and |ܣ| ൑ |ܤ| ℎ andݏ݁ݎℎܶ݁݃ݎݑ݌ ൑ܶ݁݃ݎݑ݌ℎݏ݁ݎℎ:
4. if ݁ݑ݈ܽݒ == then ݏ

ݐ݊݁ݏ݁ݎ݂ܲ݀݅ ∶= ݁ݑݎܶ

 continue

else if ݁ݑ݈ܽݒ represents an instance from ܩܭ஺

 Add ݁ݑ݈ܽݒ to ܣ

else if ݁ݑ݈ܽݒ represents an instance from ܩܭ஻

 Add ݁ݑ݈ܽݒ to ܤ

else

 Emit error signal and terminate

5. end if

6. if either |ܣ| == Ͳ or |ܤ| == Ͳ or ! then ݏ

146

 Terminate

7. end if

8. Place in ܦ′ all elements ሺa, bሻ א ௕௔௚ܽ)ܨܦܫܨܶ݃݋ܮ such that ܤ×ܣ , ܾ௕௔௚) ൒ܶܨܦܫܨܶ݃݋ܮℎݏ݁ݎℎ

9. for all pairs ሺܽ, ܾሻ א do ′ܦ

݁ݎ݋ܿܵ݀ݎܽܿܿܽܬ ≔Jaccard similarity between ܽ௕௔௚ and ܾ௕௔௚

 if ݁ݎ݋ܿܵ݀ݎܽܿܿܽܬ ൒ ℎ thenݏ݁ݎℎܶ݀ݎܽܿܿܽܬ

 Emit ا ܽ௦௨௕௝௘௖௧ , ܾ௦௨௕௝௘௖௧ >, ݁ݎ݋ܿܵ݀ݎܽܿܿܽܬ >

 end if

10. end for

11. Terminate

Algorithm 8.1: The Reducer algorithm in the first MapReduce job in Figure 8.4.

In the interest of avoiding data skew, a parameter ܶ݁݃ݎݑ݌ℎݏ݁ݎℎ is

used in the same spirit as block purging (Papadakis, Ioannou, Palpanas,

Niederée & Nejdl, 2013). Specifically, the reducer stops streaming in new

values emitted by mappers once either ܣ or ܤ reaches this threshold. The

special symbol must have been encountered by the reducer by the time this

happens. While conservative, this step ensures that no one reducer instance

ends up blocking the MapReduce chain from terminating158. It also places

strong theoretical guarantees on reducer performance.

The rest of the algorithm employs strategies similar (but not identical)

to the serial TSG described earlier in Algorithm 5.1. ܨܦܫܨܶ݃݋ܮ is computed

between the bags of tokens in ܣ and ܤ. The reducer key ݊݁݇݋ݐ is explicitly

disregarded in the computations since it is known to be common to all bags in

that reducer.

The ݀ݎܽܿܿܽܬ threshold parameter ܶ݀ݎܽܿܿܽܬℎݏ݁ݎℎ replaces the

parameter ݊ in Algorithm 5.1, the number of pairs desired, in Algorithm 8.1.

Namely, all pairs with ݀ݎܽܿܿܽܬ score above ܶ݀ݎܽܿܿܽܬℎݏ݁ݎℎ are output (as

pairs of subjects), along with the ݀ݎܽܿܿܽܬ score. Because MapReduce is a

158 In informal parlance, referred to also as ‘the curse of the last reducer’.

147

shared-nothing paradigm, this was a necessary change. If a practitioner insists

on using ݊ as a parameter, but does not wish to re-run the sequence in Figure

8.4 more than once, the only safe course of action is to set the ݀ݎܽܿܿܽܬ

threshold parameter to 0, and run an additional sorting algorithm on the output

of the MapReduce sequence in Figure 8.4. In practice, adopting a high ݀ݎܽܿܿܽܬ threshold is more sensible: a practitioner is unlikely to know (or even

correctly estimate) a good value for ݊ for large datasets. On the other hand, ݀ݎܽܿܿܽܬ is a local similarity function, independent of the actual size or

statistics of the dataset. A threshold can be specified with some confidence,

independent of the dataset159. This threshold should be reasonably high (e.g.

0.8) to prevent the training data from becoming too noisy.

In the second MapReduce job, the training set is deduplicated. This

step is necessary because duplicate pairs typically share several tokens in

common, meaning that more than one reducer can emit the same pair. The

program is fairly trivial: each mapper ‘passes through’ its input to the reducer
by emitting it as the key, along with some dummy value. The reducer emits

the key as output only once, ignoring multiple occurrences.

A last point is the implementation of the uniqueness constraint, and

the generation of non-duplicates (via permutation). For minimal overhead,

these steps are best implemented in subsequent steps (the property alignment

and learning procedures).

Evaluations

Test Cases

To rigorously test the TSG in an environment where the size,

distribution of duplicates and type of noise are controlled for, medium-scale

census datasets were generated using a synthetic benchmark generator,

FEBRL, that is well established as a testbed in the instance matching

community (Christen, 2008a; Köpcke, Thor & Rahm, 2010). FEBRL uses

real-world underlying census data to generate synthetic datasets with some

user-specified parameters. The specifiable parameters include (1) the total

159 For the same reason, a practitioner must be conservative (and pessimistic) about the global thresholds

(e.g. ܶܨܦܫܨܶ݃݋ܮℎݏ݁ݎℎ) since these do depend on dataset size and statistics. In Chapter 5, it was argued

that setting a low value for such thresholds was typically sufficient.

148

number of original records (2) the total number of duplicate records, (3) the

maximum number of duplicates for an original record, (4) the distribution of

duplicates (one of ܷ݂݊݅݉ݎ݋, the maximum number of (5) ,(݊݋ݏݏ݅݋ܲ or ݂݌ܼ݅

modifications per attribute when generating a duplicate record, and (6) the

maximum number of modifications per record160 when generating a duplicate

record. Another parameter that can be specified but that is left fixed for all

experiments in this section is the type of noise (phonetic, typographical,

optical character recognition or all three) that can be used to distort attribute

values in an original record when generating a duplicate. For maximal real-

world representativeness, all types of noise were permitted in the generative

process.

Dataset

Name

Total number of

records = File 1 +

File 2

Max.

duplicates per

original record

Max. modifications

(Per field/Per

Record)

Census(ܺ;

50,000)

50,000 = 30,000 +

20,000
5 3/5

Census(ܺ;

100,000)

100,000 = 60,000 +

40,000
5 3/5

Census(ܺ;

500,000)

500,000 = 300,000 +

200,000
5 3/5

Census(ܺ;

1,500,000)

1,500,000 = 900,000 +

600,000
3, 4, 5 4/5, 2/4, 3/5

Table 8.2: Parameter settings for the four generated dataset classes.

The variable ܺ in the name column may take a value from the

duplicates distribution set {ܷ݂݊݅݉ݎ݋, ,݊݋ݏݏ݅݋ܲ leading to a total of ,{݂݌ܼ݅

twelve datasets generated. See text for an explanation of ternary-valued

column values (Columns 3 and 4) for the last dataset. Only matches between

the two files are valid.

To assess instance matching scalability, twelve datasets were

generated, four for each of the three duplicates distributions in (4). The

parameters of these four datasets are given in Table 8.2. Note that the FEBRL

160 That is, across all attributes. This number must necessarily be larger than the one specified in (5).

149

generator has a random component; for exact reproducibility of the results in

this section, the generated datasets have also been archived.

The dataset sizes in Table 8.2 are motivated by the discussion in

Section 8.2. Specifically, a medium-scale test suite was argued to fall within

the domain of a large-scale instance matching application. Within an order of

magnitude, the datasets in Table 8.2 reflect the sizes of the most popular

datasets on Linked Open Data. In Chapter 3, it was noted that many parallel

and distributed instance matchers were often evaluated on datasets containing

far fewer than a million entities (Section 3.1.3). This has also been the case in

more recent work161.

Even during generation, the FEBRL generator ran out of memory on

a node with over 7 GB of RAM when generating the Census(ܺ; 1,500,000)

for all three duplicates distributions (ܺ א ,݉ݎ݋݂ܷ݅݊} ,݊݋ݏݏ݅݋ܲ In .({݂݌ܼ݅

order to build a dataset with 1.5 million records, three datasets with 500,000

records were generated (hence, the ternary-valued parameter values in

Columns 3 and 4 in Table 8.2), and combined162. Note that this piecewise

methodology is expected to have a negative impact on the precision and recall

measures of any instance matcher. This is because there is a non-trivial

probability that records in one of the three datasets matches with records in

the other two datasets, and will be retrieved by the system. In the ground-truth

file, such matches will not have been recorded (because the three datasets were

independently generated), meaning that they will be counted as incorrect in

the evaluations. Although this caveat is expected to affect accuracy metrics,

scalability metrics are less likely to be impacted, especially if duplicates

distribution indifference can be conclusively established.

Note that the FEBRL generator was originally intended for Relational

Database instance matchers and the generated files adhere to the Comma

Separated Values (CSV) format. Among the serializations introduced in

Chapter 2, and illustrated in Figure 2.1, CSV most closely conforms to the

format of the logical property table (Figure 2.1c). The MapReduce algorithms

presented in this chapter rely on a NoSQL format (Figure 2.1d). A natural first

question to investigate is if the serialization can be achieved in a near-linear

161 For example, Sadosky, Shrivastava, Price & Steorts (2015) show that even datasets containing about
300,000 entities require extremely high reduction ratios to successfully terminate.

162 For convenience, because the parameter values of the first of the three datasets and Census(ܺ;

500,000) are identical, the corresponding Census(ܺ; 500,000) dataset was re-used as the first dataset.

150

time fashion with only a few nodes. To that end, a serialization algorithm

converting the CSV files to NoSQL files was executed on a 4-node HDInsight

cluster that can be spun up in Microsoft Azure in only a few minutes. The

algorithm operates by performing all its computations in the mapper. First, the

property schema is placed in the distributed cache. Using the schema, each

record is converted into a self-contained NoSQL JSON-like object. The

reducer is a trivial identity function.

Figure 8.5: Serialization results on a 4-node HDInsight cluster.

Figure 8.5 illustrates the results of this process, and confirms both the

low wall-clock run-time and the linear-time dependence. For the largest

dataset, for example, the run-time was in the vicinity of only five minutes. The

results show that assuming the NoSQL serialization for inputs is not expected

to cause problems of scale. Also, the serialization run-time was found to be

independent of the duplicates distribution.

Methodology

All MapReduce experiments were conducted on the Microsoft Azure

platform, described at the beginning of Section 8.3. The TSG parameters were

set as follows. The IDF threshold required in the TSG mapper was set using

the formula
்௢௧௔௟ ே௨௠௕௘௥ ௢௙ ௥௘௖௢௥ௗ௦ହ଴ . This number ensures that a token is only

acceptable as a key if it occurs in at least 2% of the total number of records

(e.g. 1000 for the dataset containing 50,000 records). This rather conservative

151

estimate ensures that the majority of the records do not get filtered out in the

mapper itself, in which case, studying the scaling properties of the TSG

becomes problematic. Three other threshold parameters that need to be set in

the reducer are the purge threshold ܶ݁݃ݎݑ݌ℎݏ݁ݎℎ, ܨܦܫܨܶ݃݋ܮ

threshold ܶܨܦܫܨܶ݃݋ܮℎݏ݁ݎℎ, and ݀ݎܽܿܿܽܬ threshold ܶ݀ݎܽܿܿܽܬℎݏ݁ݎℎ.

Following earlier arguments, ܶ݁݃ݎݑ݌ℎݏ݁ݎℎ is set to a moderately low value

of 50 (to avoid data skew), ܶܨܦܫܨܶ݃݋ܮℎݏ݁ݎℎ is set to an extremely low (but

non-zero) value of 0.001 and ܶ݀ݎܽܿܿܽܬℎݏ݁ݎℎ is set to a high value of 0.8. In

several early experiments, these values were found to lead to good TSG

performance.

Results

Duplicates distribution indifference: The primary rationale behind

generating datasets with different duplicate distributions was to test the

sensitivity of the algorithms to the distribution. To that end, the TSG run-times

across the three distributions were recorded and compared.

We found that, for constant cluster size (across a range of cluster

sizes) and dataset size, the duplicates distribution had no impact on map,

reduce or overall run-times. The maximum difference in the recorded run-time

data across two different distributions was only half a minute (usually less

than 5% of the total recorded run-time), which could be attributed to cluster

variance. In summary, the TSG exhibits duplicates distribution indifference.

Scaling: Using a small cluster with four data nodes and two master

nodes (24 cores in total), the TSG was executed on the four different datasets

in Table 8.2 for the Zipf duplicates distribution. To evaluate whether scaling

had been achieved, the TSG was also executed on clusters that were

approximately twice as large (with 40-48 cores in total).

152

Figure 8.6: Training set generator run-time results.

Figure 8.6 illustrates the results of the 24 core run for the datasets

exhibiting the Zipf duplicates distribution. The reducer (outlined in Algorithm

8.1) is more compute-intensive than the mapper, and is nearly coincidental

with the overall run-time curve. Concerning runs on bigger clusters, the results

were found to be near-identical to the 24-core run, implying that full scaling

had already been achieved on the small cluster, even for the dataset with 1.5

million records. This provides good evidence in support of a key motivation

outlined in Section 8.2, namely, that existing systems must scale near-linearly

using relatively small clusters163.

Accuracy of Training Set: In keeping with previously introduced

notions that the TSG is only reliable for small training sets, the top hundred

pairs (sorted by ݀ݎܽܿܿܽܬ score, using ܶ݀ݎܽܿܿܽܬℎݏ݁ݎℎ = Ͳ.ͺ) output by the

TSG were analyzed using the precision metric. In all twelve cases, the

precision was found to be 100%, justifying the use of a high ݀ݎܽܿܿܽܬ

threshold and a small retrieval size164.

163 The rationale was that, due to the large intermediate output sizes, clusters would have to grow
quadratically with proportional growth in the data (number of entities). Linked Open Data has

consistently shown super-linear growth since it first emerged in 2007 (Schmachtenberg, Bizer &

Paulheim, 2014).
164 It is possible to achieve 100% precision with higher retrieval sizes for the larger datasets, but this

implies, unrealistically, that the number of duplicates is known a priori and that the retrieval size can be

tuned accordingly. A similar argument was used to motivate the results in Table 5.2 in Chapter 5.

153

It is also constructive to study the total number of instance pairs output

by the algorithm for each of the cases. Given real-world observations, this

number should only grow linearly with the dataset.

Figure 8.7: The mean number of instance pairs output by the TSG as a function of the total

number of records, with the mean taken across the three duplicates distributions.

Figure 8.7 shows that this is roughly the case: the growth is only

slightly super-linear for small datasets, and linear for larger datasets. This

provides evidence that the parameter settings are judicious (and may even be

further improved). Indifference of the algorithm to duplicates distributions

was again established: regardless of the number of records, the standard

deviation of the number of pairs retrieved by the TSG, taken across the three

duplicates distributions, was less than 3% of the mean.

8.3.3 Property Alignment and Learning Procedures

Although finer-grained, the property alignment procedure (Algorithm

6.1) is not dissimilar, in principle, to the type alignment procedure (Algorithm

4.1). Both algorithms rely on building a similarity matrix, and then performing

a variety of calculations on the matrix. For type alignment, simple distance

calculations between type documents suffices for populating the matrix

(Chapter 4), while for property alignment, hybrid techniques are required for

good performance (Chapter 6).

From a scalability perspective, an important difference arises from the

observation that Algorithm 6.1 only needed the training sets, assumed to be of

154

modest size (per the discussion at the end of Section 5.2), to derive the

similarity matrix. The algorithm itself is inherently serial in that the matrix

needs to be on a single node165 to facilitate the intended computations. In no

real-world case (even those beyond the scope of data integration) did we

encounter a scenario where this assumption was problematic.

These observations indicate that designing a parallel algorithm from

scratch is not necessitated, and Algorithm 6.1 can be exactly re-implemented

in MapReduce by first assigning all pairs output by the TSG, a single key in

the map program, and then executing Algorithm 6.1 in an off-the-shelf fashion

in the one reducer where all inputs are guaranteed to arrive166. One additional

step that needs to take place in the reducer before Algorithm 6.1 is executed

is the implementation of the uniqueness constraint and the generation of non-

duplicates (via permutation). Since all the duplicate training samples arrive at

the reducer, this would mean executing lines 8 and 9 of Algorithm 5.1 before

executing Algorithm 6.1 Once computed, the property alignment is written

out to the distributed file system as output. To avoid repetitive computations,

the ‘new’ training set (with the uniqueness constraint implemented, and the
non-duplicates generated) is also output. The evaluation of property alignment

is trivial from a scalability standpoint, and is not reproduced here.

 Deriving the blocking scheme ܤ and classifier ܥ (the learning

procedures in Chapter 7) relies on similar observations. Again, because the

(new) training set and property alignment are both of modest size, a single

reducer can be relied upon for the inherently serial processing. Note that, in

the case of the learning procedures, some computation (by way of feature

generation) can be offloaded to the mapper. This is accomplished by placing

the property alignment in the distributed cache and using it to convert each

instance pair (in the training set) into a feature vector in the mapper itself. The

feature vector, and not the raw strings constituting the instance pair, is shuffled

to the reducer. Because the features proposed in Chapter 7 are binary, efficient

representations can be used to significantly reduce shuffling costs.

In the reducer, either the blocking scheme or classifier (or both) can

be learned using the vectors, with the model parameters output to the

165 A stronger assumption is that the matrix needs to be in main memory, which was also not found to be

problematic in real-world cases. In the rare case where this would be violated, Algorithm 6.1 can still be
implemented without loss of functionality.

166 An erroneous assumption would be that, the inputs being of modest size, they can be expected to

reside in a single map node. The distributed file system does not guarantee this for any input size.

155

distributed file system. The next section reports on some evaluation results for

the blocking and similarity steps.

8.3.4 Blocking and Similarity

Similar to the training set generator, the blocking and similarity steps

involve processing the complete property tables ଵܲ and ଶܲ, although they also

take as inputs the blocking scheme ܤ and the machine learning classifier ܥ.

Given that ܤ and ܥ are modest-sized files, representing functions, they are

well-suited for the distributed cache functionality accompanying all known

MapReduce implementations. Before mappers and reducers are executed, the

files describing ܤ and ܥ are read, transformed to the appropriate data

structures, and placed in the cache. Because of the modest size of these files,

the shuffling cost of this pre-execution step is low.

In each mapper, an entity in the property table is read in as a NoSQL

object. Blocking key values for the entity are generated by accessing ܤ and

applying it on the entity. The values serve as the reducer keys for that entity.

In each reducer, the entities are collected into two sets167 as they are shuffled.

Using block purging, data skew is controlled in a straightforward fashion

(Papadakis et al., 2013). Once a set exceeds a pre-specific size

 the reducer is terminated. This part of the algorithm is nearly ,(ℎݏ݁ݎℎܶ݁݃ݎݑ݌)

identical to the first part of Algorithm 8.1.

Once the streaming of blocked entities (into a given reducer) is

complete, and assuming that (1) the reducer has not terminated, and (2) both

sets are non-empty, each pair is converted into a feature vector, and the

distributed cache is accessed again. The classifier ܥ is used to classify the

vector with a given probability. If the probability exceeds a pre-specified

threshold, the pair is output.

Some important points are of note. Although the experiments in

Chapter 7 assumed an SVM classifier, any model can be used, as long as the

program interprets the model correctly. It is also possible for ܥ to not be a

machine learning classifier at all, but a rule-based or distance-based program.

Similar observations apply to the blocking scheme ܤ (which may not be a

DNF scheme) and also to the feature vector generation process. At a high-

167 One set for each property table.

156

level, any well-defined blocker can be executed in the mapper, and any well-

defined similarity function, in the reducer.

This genericity has obvious practical ramifications. In the instance

matching literature, much recent progress has been due to the use of better

classifiers, better blocking techniques (Table 7.2) and better features

(Christen, 2012b). As argued in Chapter 2, the two-step instance matching

framework is unlikely to be superseded in the foreseeable future. The

MapReduce algorithms presented in this section explicitly accommodate

genericity of classifiers, blocking schemes and feature generators.

Evaluations

The goal of these evaluations is to demonstrate a proof-of-concept

execution of the described MapReduce-based blocking and similarity

algorithms using a classifier, blocking scheme and feature generator that are

different from those adopted in the serial evaluations in Chapter 7. The twelve

census datasets used in the TSG evaluations are used again as test cases.

Methodology

As a first step, a series of pilot experiments were conducted on the

three datasets containing 50,000 records each (for all three duplicates

distributions) using three classifiers available in the Weka168 package:

decision table, Gaussian Processes (GP) and linear regression (Hall, Frank,

Holmes, Pfahringer, Reutemann & Witten, 2009). A small set of 100 duplicate

pairs and 1000 non-duplicate pairs were used for training and validating each

of the three classifiers, with the rest used for testing. The goal is to settle on a

classifier for the actual proof-of-concept experiment. Sixteen token-based

real-valued features were used to represent each instance pair, and were

generated as follows.

First, given an instance pair < ݅, ݆ >, each of the two instances was

parsed into four bags. The first bag contains all tokens that occur in property

URIs. The second bag contains all object tokens, where the object is a literal.

The third bag contains all tokens in the instance that do not fall within the first

168 Accessed at http://www.cs.waikato.ac.nz/ml/weka/.

157

two bags (e.g. subject tokens, and object tokens where the object is not a

literal). The fourth bag is the union of the first three bags.

Once both ݅ and ݆ have been parsed into four bags each, sixteen

features can be constructed by computing a similarity score between all

pairwise combinations of the four bags (between the two instances). Given its

robust performance in prior evaluations, the ݀ݎܽܿܿܽܬ similarity score was

used169.

A particular advantage of the feature generation process described

above is that it does not rely on a property alignment. In that sense, the features

are schema-free, not dissimilar to computing a bag-of-words representation

for each instance. Note that, despite its simplicity, not using a property

alignment has an implicit performance cost: prior structural information that

could be used to inform the instance matching process is not being exploited

(Chapter 6).

 In the pilot evaluations, for almost all classifiers and duplicates

distributions, a high enough classification threshold (0.7 and above) was

found to lead to F-Measures (of precision and recall) well above 95%, and in

many cases, 99%. The linear regression classifier fared slightly worse than the

other two. The experiment also confirmed earlier findings of duplicates

distribution indifference.

Following these results, the main proof-of-concept experiment was

set up as follows. Attribute Clustering (AC), rather than DNF blocking, was

used as the blocking method (Papadakis et al., 2013). The Gaussian Processes

(GP) model was chosen as the classifier and loaded into the distributed cache.

The sixteen features described above were used for the feature generation

process. In terms of overall code-writing effort, the changes were not

extensive. The mapper from the TSG component of the system was re-used,

but with a more aggressive strategy for tuning the IDF threshold170. Similarly,

the ܶ݁݃ݎݑ݌ℎݏ݁ݎℎ݈݀݋ parameter was fixed at a lower value of 10 to ensure a

sufficiently high reduction ratio. The goal of this tuning is to filter out more

169 Before computing the score, an additional preprocessing step was undertaken. Specifically, given that

many strings in RDF graphs are opaque (i.e. semantically meaningless, except for syntactic or record-

keeping processes), all bags were purged of strings that did not only contain alphabets. This step was

found to have significant benefits.
170 The original IDF threshold value (given earlier by

்௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௥௘௖௢௥ௗ௦ହ଴) is multiplied by 5.

158

records in the mapper, so that the reducer is less compute-intensive than

before.

Results

Figure 8.8: Blocking-similarity run-time results using Attribute Clustering (AC) blocking and

a Gaussian Processes (GP) classifier.

Figure 8.8 illustrates the results of the proof-of-concept experiment.

Similar to the TSG, the process takes most of its time in the reducers, but

achieves performance that is considerably more linear, owing to more

aggressive parameter tuning. Figure 8.8 also reinforces the evidence of the

system achieving scale using small clusters only. Most importantly, the

experiment demonstrates, through a live run, that the system can be deployed

in a flexible manner. That is, innovations in blocking and feature generation

are not expected to make the architecture unusable.

159

Chapter 9: Conclusion

9.1 Summary

Datasets in Linked Open Data (LOD) are published on the Web using

a guiding set of four Linked Data principles (Bizer, Heath & Berners-Lee,

2009). The fourth principle stipulates that datasets should not be published in

silos, but be interlinked. To fulfill this principle, :sameAs declarations are

often used to declare synonymy relations between entities that refer to the

same underlying entity. These synonyms are equivalent to the population of

an Entity Name System (ENS), defined as a thesaurus for entities. An ENS is

a crucial component in a data integration architecture (Lenzerini, 2002; Doan,

Halevy & Ives, 2012).

Devising an algorithmic solution to the problem of finding

synonymous pairs of entities is known as instance matching (Ferrara, Nikolov

& Scharffe, 2013). Solving the instance matching problem is central to

populating a Linked Data ENS.

The thesis statement in Chapter 1 stated that given the current state of

Linked Open Data, a feasible instance matcher must simultaneously fulfill the

four requirements of domain-independence, automation, scalability and

heterogeneity, referred to henceforth as the DASH requirements.

A set of arguments, both data-driven and intuitive, is used to support

the statement. Domain-independence is necessary because organizations in

many domains contribute to Linked Open Data (LOD). At the time of writing,

numerous datasets in the domains of social media, publications, government

and education are already available (Schmachtenberg, Bizer & Paulheim,

2014). Cross-domain knowledge bases, which describe encyclopedic content

and are like structured versions of Wikipedia, are also extremely popular on

LOD.

Automation is necessitated both by current trends, as well as the

growth of LOD. Since LOD is an open community, and involves many

organizations that are not always equipped for dealing with complex technical

challenges, a sustainable solution must use techniques that are both robust and

involve low amounts of labeling effort.

160

Scalability is motivated by the pairwise nature of instance matching

(Section 2.4.1). Even though many of the largest and most important LOD

datasets are medium-scale (between 100,000 to 5 million entities), processing

them serially is challenging because of the super-linear (though sub-

quadratic) run-time complexity of state-of-the-art instance matching

workflows. Examples were used to illustrate that, in the context of instance

matching, medium-scale datasets lead to large-scale applications. In Section

2.4.2, MapReduce was introduced as a distributed paradigm of choice for

implementing a scalable instance matching workflow in the cloud (Dean &

Ghemawat, 2008).

Finally, heterogeneity, more precisely referred to as structural

heterogeneity, arises on Linked Open Data both because of type and property

heterogeneity. The former problem arises because entities of different types

are interlinked with each other in a non-trivial way, while the latter arises

because entities of compatible types are represented using different sets of

properties. In the vast majority of the instance matching literature, two

structurally heterogeneous datasets are typically assumed to be homogenized

(perhaps in a preprocessing step) before being input to an instance matcher

(Elmagarmid, Ipeirotis & Verykios, 2007). On Linked Open Data, such an

assumption is unrealistic.

The development of an instance matcher meeting the DASH

requirements was motivated through a review of related work from the lens of

the DASH requirements. In Chapter 3, this review was used to argue that, at

present, no one system can purport to simultaneously meet the full set of

requirements.

The output of this dissertation is an instance matcher that fulfills the

four DASH requirements. The schematic of this system was presented and

briefly described in Section 1.5. The system accepts two structurally

heterogeneous RDF graphs as input, and outputs a set of :sameAs links that

can be used to populate a Linked Data ENS.

The primary core contribution of the dissertation is an unsupervised

training set generator (TSG) designed specifically for heterogeneous RDF

graphs. To the best of our knowledge, this is the first such TSG that has been

shown to be viable in enabling an unsupervised execution of a full instance

matching pipeline. The TSG uses two fast, token-based heuristics to yield a

small set of ‘easy’ examples that are used to bootstrap later learning processes.

161

Because the TSG is completely unsupervised, there is often noise in

the ‘seed’ training set generated by the algorithm, which makes the design of

robust, generalizable learning processes challenging. The second core

contribution of this dissertation is a property alignment algorithm that

accommodates some of these challenges. In particular, the algorithm is

parameter-free and uses a combination of informative signals to achieve

consistently high recall (without trivially degrading precision) across a range

of domains and datasets. By virtue of high recall, the property alignments are

viable for extracting useful structural features that are used to learn

discriminative blocking and similarity functions.

A particular class of blocking keys called Disjunctive Normal Form

(DNF) blocking keys is known to be particularly useful for homogeneous

Relational Databases. As a third core contribution, we present a DNF

blocking key learner for heterogeneous RDF graphs. Empirically, the learned

DNF blocking keys are shown to outperform a state-of-the-art RDF blocking

method.

Additionally, note that the domain independence of various

components detailed in Chapters 5-7 was established by employing a test suite

comprising ten multi-domain RDF datasets. Chapter 8 discussed a

MapReduce-based implementation of the schematic. A set of controlled

experiments on a small cluster showed that the implementation exhibited near-

linear scaling, and successfully accommodated data skew (i.e. was indifferent

to the distribution of duplicates). Auxiliary evaluations were also used to

illustrate system performance on the large-scale type alignment task.

9.2 Future Work

While we hope that this work represents progress in realizing the

overall goal of viable information integration in the Linked Open Data

ecosystem, we recognize that it does not solve the problem. To that end,

several areas of future research that we believe to be promising, are briefly

(and non-exhaustively) covered below.

162

9.2.1 Linked Data Quality

The large-scale type alignment evaluation in Chapter 8 showed that,

due to their encyclopedic nature, cross-domain knowledge graphs on Linked

Open Data exhibit a high degree of type heterogeneity. Consider Freebase, for

example, which contains 4811 types, and DBpedia, which contains just over

400 ontological types. This would not be problematic if there was a well-

defined way of defining a ground-truth for evaluating type alignment between

such graphs. In some of our most recent experiments, we found that there are

at least three different ways of constructing such a ground-truth, and that each

has been used in prior research at least once. These ground-truths were not

found to be overly consistent, implying that the perceived success of a type

alignment solution is based on the adopted ground-truth171.

This result is important because type alignment is a basic

preprocessing step in many knowledge discovery processes on structured

graphs, with extensions beyond instance matching. Two other noted

applications are semantic search and ontology matching (Bouquet & Molinari,

2013; Euzenat & Shvaiko, 2007). The question arises as to why these ground-

truths are inconsistent to begin with. We attempted a preliminary answer to

this question by hypothesizing that a sizeable number of type declarations in

Linked Open Data knowledge graphs are noisy. This noise is likely to have a

direct impact on any application that makes use of these declarations. Since

the number of types is far fewer than the number of instances and properties,

dealing with noise at the type level, rather than the instance level, is a

promising avenue for improving the overall quality of medium-scale datasets

on Linked Open Data. This, in turn, could facilitate broader, more mainstream,

data integration applications.

9.2.2 Schema-free Approaches

The growing diversity of Linked Data suggests that the time may be

ripe for further investigation of schema-free knowledge discovery approaches.

Traditional approaches, inspired mainly by the Relational Database literature,

almost always perform some form of schema matching (e.g. property

171 In the evaluations in Chapter 8, one definition of ground-truth was adopted throughout (which was

also the definition adopted in Chapter 4). This is because type alignment was evaluated in the context of

instance matching. Without this context, evaluating type alignment becomes ill-defined.

163

alignment was a core component in the dissertation system) in an attempt to

homogenize the data before doing further processing. The conventional

wisdom was that such homogenization is necessary both qualitatively and

computationally172.

A growing body of research is disputing this wisdom, with the result

being an increased use of schema-free techniques. In a recent paper, for

example, we developed a schema-free version of the classic Sorted

Neighborhood algorithm for RDF data, and showed that it compares favorably

to an established baseline173 (Kejriwal & Miranker, 2015d).

Schema-free algorithms constitute a relatively novel area of research,

and many questions remain. For instance, which schema-free features are

‘good’, and how do we discover them? Can deep learning174 be used to

automate this feature discovery process? Can schema-free algorithms be used

to bypass type and property alignment completely, or embedded in a hybrid

framework to realize the benefits of both worlds?

9.2.3 Transfer Learning

The Linked Data ecosystem is a good candidate for applying transfer

learning techniques (Pan & Yang, 2010), the reason being the high

connectivity of many datasets to the encyclopedic graphs (e.g. DBpedia).

When linking a new dataset to existing datasets on Linked Open Data, the

exhaustive and time-consuming process of gathering training data, and

determining best-fit parameters, among other things, could well be automated

by utilizing past models and training data from approximately similar sources.

While transfer learning is hardly a new area (Baxter, 1998), its

potential continues to be actively researched in several mainstream machine

learning applications (Mesnil et al., 2012). To the best of our knowledge, its

potential on Linked Open Data has not been fully explored, especially at

172 In Chapter 2, the rationale behind this wisdom was presented and illustrated in Section 2.3.2.
173 The baseline in that paper was Attribute Clustering (AC), which was also employed as a baseline in
Chapter 7.
174 It is by no means certain that deep learning can be successfully used for instance matching, owing to

data sparsity.

164

scale175. Given the recent trends in automation, such exploration may prove to

be rewarding.

175 We are aware of only one work that applies transfer learning techniques in a Linked Data instance

matching application (Rong et al., 2012).

165

Appendix A: MapReduce

 Figure A.1: Abstract overview of the MapReduce paradigm. For each unit of data (e.g. a record)

input to a mapper, a set of < ,ݕ݁݇ ݁ݑ݈ܽݒ > pairs are generated. Each pair is shuffled (i.e. logically

transported) to a reducer, which is said to be indexed by the key. All pairs sharing a key are guaranteed to

arrive at the same reducer. Inputs to the mappers are read from, and outputs from the reducers written to,

the distributed file system in the form of < ,ݕ݁݇ ݁ݑ݈ܽݒ > pairs.

MapReduce is a shared-nothing master-slave paradigm that relies on

a distributed file system or DFS (Dean & Ghemawat, 2008). An illustration is

provided in Figure A.1. A MapReduce program comprises a map program and

a reduce program176. A mapper reads in a unit of data as a < ,ݕ݁݇ ݁ݑ݈ܽݒ >

pair, and processes it to output (equivalently, emit) a set of < ,ݕ݁݇ ݁ݑ݈ܽݒ >

pairs. Mapper outputs are shuffled across the network so that each pair with

the same key is guaranteed to arrive at the same reducer. Thus, the reducer

receives as input a single key and a set of values. The reducer processes its

inputs and emits another set of < ,ݕ݁݇ ݁ݑ݈ܽݒ > pairs. While local storage may

be used during intermediate MapReduce computations, the final outputs are

always written out to the DFS. Note that mappers and reducers are logical

176 Optionally, a combine program can also be specified to save network shuffling costs (Dean &

Ghemawat, 2008).

166

processes; several mappers and reducers may be spawned on a single node in

a physical implementation (White, 2012).

The master-slave principles of MapReduce have some powerful

advantages. The first of these is data locality (Dean & Ghemawat, 2008). The

master process dynamically spawns mappers and reducers in an attempt to

keep shuffling and I/O costs to a minimum. It also controls redundancy, and

the re-spawning of processes in the event of a failure. For this reason,

MapReduce proves to be surprisingly robust. A typical cluster can be

implemented on commodity hardware, without the need for specialized

servers.

167

References

Alani, H., Kim, S., Millard, D. E., Weal, M. J., Hall, W., Lewis, P. H., & Shadbolt, N. R. (2003).

Automatic ontology-based knowledge extraction from web documents. Intelligent Systems,

IEEE, 18(1), 14-21.

Allemang, D., & Hendler, J. (2011). Semantic web for the working ontologist: effective model

Angles, R., & Gutierrez, C. (2005). Querying RDF data from a graph database perspective.

In The Semantic Web: Research and Applications(pp. 346-360). Springer Berlin Heidelberg.

Araujo, S., Hidders, J., Schwabe, D., & De Vries, A. P. (2011). Serimi-resource description

similarity, rdf instance matching and interlinking. arXiv preprint arXiv:1107.1104.

Arenas, M., Díaz, G., Fokoue, A., Kementsietsidis, A., & Srinivas, K. (2014). A principled

approach to bridging the gap between graph data and their schemas. Proceedings of the VLDB

Endowment, 7(8), 601-612.

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., ... & Harris, M.

A. (2000). Gene Ontology: tool for the unification of biology. Nature genetics, 25(1), 25-29.

Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., & Ives, Z. (2007). Dbpedia: A

nucleus for a web of open data (pp. 722-735). Springer Berlin Heidelberg.

Baxter, J. (1998). Theoretical models of learning to learn. In Learning to learn (pp. 71-94).

Springer US.

Baxter, R., Christen, P., & Churches, T. (2003, August). A comparison of fast blocking methods

for record linkage. In ACM SIGKDD (Vol. 3, pp. 25-27).

Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern information retrieval (Vol. 463). New

York: ACM press.

Bellahsene, Z., Bonifati, A., & Rahm, E. (2011). Schema matching and mapping (Vol. 20).

Heidelberg (DE): Springer.

Benjelloun, O., Garcia-Molina, H., Gong, H., Kawai, H., Larson, T. E., Menestrina, D., &

Thavisomboon, S. (2007, June). D-swoosh: A family of algorithms for generic, distributed

entity resolution. In Distributed Computing Systems, 2007. ICDCS'07. 27th International

Conference on (pp. 37-37). IEEE.

Benjelloun, O., Garcia-Molina, H., Menestrina, D., Su, Q., Whang, S. E., & Widom, J. (2009).

Swoosh: a generic approach to entity resolution. The VLDB Journal—The International Journal

on Very Large Data Bases, 18(1), 255-276.

168

Bhattacharya, I., & Getoor, L. (2006, April). A Latent Dirichlet Model for Unsupervised Entity

Resolution. In SDM (Vol. 5, No. 7, p. 59).

Bilenko, M., & Mooney, R. J. (2003, August). Adaptive duplicate detection using learnable

string similarity measures. In Proceedings of the ninth ACM SIGKDD international conference

on Knowledge discovery and data mining (pp. 39-48). ACM.

Bilenko, M., Kamath, B., & Mooney, R. J. (2006, December). Adaptive blocking: Learning to

scale up record linkage. In Data Mining, 2006. ICDM'06. Sixth International Conference

on (pp. 87-96). IEEE.

Bilke, A., & Naumann, F. (2005, April). Schema matching using duplicates. In Data

Engineering, 2005. ICDE 2005. Proceedings. 21st International Conference on (pp. 69-80).

IEEE.

Bizer, C. (2009). The emerging web of linked data. Intelligent Systems, IEEE, 24(5), 87-92.

Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked data-the story so far. Semantic Services,

Interoperability and Web Applications: Emerging Concepts, 205-227.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. the Journal of

machine Learning research, 3, 993-1022.

Borthakur, D. (2007). The hadoop distributed file system: Architecture and design. Hadoop

Project Website, 11(2007), 21.

Bouquet, P., & Molinari, A. (2013). A global entity name system (ens) for data

ecosystems. Proceedings of the VLDB Endowment, 6(11), 1182-1183.

Cao, Y., Chen, Z., Zhu, J., Yue, P., Lin, C. Y., & Yu, Y. (2011, July). Leveraging unlabeled

data to scale blocking for record linkage. In IJCAI Proceedings-International Joint Conference

on Artificial Intelligence (Vol. 22, No. 3, p. 2211).

Carr, R. D., Doddi, S., Konjevod, G., & Marathe, M. V. (2000, January). On the red-blue set

cover problem. In SODA (pp. 345-353).

Carroll, J. J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., & Wilkinson, K. (2004,

May). Jena: implementing the semantic web recommendations. In Proceedings of the 13th

international World Wide Web conference on Alternate track papers & posters (pp. 74-83).

ACM.

Chakrabarti, K., Chaudhuri, S., Cheng, T., & Xin, D. (2012, August). A framework for robust

discovery of entity synonyms. In Proceedings of the 18th ACM SIGKDD international

conference on Knowledge discovery and data mining (pp. 1384-1392). ACM.

169

Chang, C. C., & Lin, C. J. (2011). LIBSVM: A library for support vector machines. ACM

Transactions on Intelligent Systems and Technology (TIST), 2(3), 27.

Chaudhuri, S., Ganti, V., & Motwani, R. (2005, April). Robust identification of fuzzy

duplicates. In Data Engineering, 2005. ICDE 2005. Proceedings. 21st International

Conference on (pp. 865-876). IEEE.

Chen, P. P. S. (1976). The entity-relationship model—toward a unified view of data. ACM

Transactions on Database Systems (TODS), 1(1), 9-36.

Christen, P. (2008, August). Febrl-: an open source data cleaning, deduplication and record

linkage system with a graphical user interface. In Proceedings of the 14th ACM SIGKDD

international conference on Knowledge discovery and data mining (pp. 1065-1068). ACM.

Christen, P. (2008, August). Automatic record linkage using seeded nearest neighbour and

support vector machine classification. In Proceedings of the 14th ACM SIGKDD international

conference on Knowledge discovery and data mining (pp. 151-159). ACM.

Christen, P. (2012). Data matching: concepts and techniques for record linkage, entity

resolution, and duplicate detection. Springer Science & Business Media.

Christen, P. (2012). A survey of indexing techniques for scalable record linkage and

deduplication. Knowledge and Data Engineering, IEEE Transactions on,24(9), 1537-1555.

Chvatal, V. (1979). A greedy heuristic for the set-covering problem. Mathematics of operations

research, 4(3), 233-235.

Codd, E. F. (1970). A relational model of data for large shared data banks.Communications of

the ACM, 13(6), 377-387.

Cohen, W. W. (2000). Data integration using similarity joins and a word-based information

representation language. ACM Transactions on Information Systems (TOIS), 18(3), 288-321.

Cohen, W. W., Kautz, H., & McAllester, D. (2000, August). Hardening soft information

sources. In Proceedings of the sixth ACM SIGKDD international conference on Knowledge

discovery and data mining (pp. 255-259). ACM.

Cucerzan, S. (2007, June). Large-Scale Named Entity Disambiguation Based on Wikipedia

Data. In EMNLP-CoNLL (Vol. 7, pp. 708-716).

Das Sarma, A., He, Y., & Chaudhuri, S. (2014). Clusterjoin: a similarity joins framework using

map-reduce. Proceedings of the VLDB Endowment, 7(12), 1059-1070.

170

Datar, M., Immorlica, N., Indyk, P., & Mirrokni, V. S. (2004, June). Locality-sensitive hashing

scheme based on p-stable distributions. In Proceedings of the twentieth annual symposium on

Computational geometry (pp. 253-262). ACM.

Date, C. J., & Darwen, H. (1993). A guide to the SQL Standard: a user's guide to the standard

relational language SQL (Vol. 55822). Addison-Wesley Longman.

Dean, J., & Ghemawat, S. (2008). MapReduce: simplified data processing on large

clusters. Communications of the ACM, 51(1), 107-113.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete

data via the EM algorithm. Journal of the royal statistical society. Series B (methodological),

1-38.

Dietze, S., Sanchez-Alonso, S., Ebner, H., Qing Yu, H., Giordano, D., Marenzi, I., & Pereira

Nunes, B. (2013). Interlinking educational resources and the web of data: A survey of

challenges and approaches. Program, 47(1), 60-91.

Doan, A., Halevy, A., & Ives, Z. (2012). Principles of data integration. Elsevier.

Dong, X. L., & Srivastava, D. (2013, April). Big data integration. In Data Engineering (ICDE),

2013 IEEE 29th International Conference on (pp. 1245-1248). IEEE.

Dredze, M., McNamee, P., Rao, D., Gerber, A., & Finin, T. (2010, August). Entity

disambiguation for knowledge base population. In Proceedings of the 23rd International

Conference on Computational Linguistics (pp. 277-285). Association for Computational

Linguistics.

Duan, S., Fokoue, A., Hassanzadeh, O., Kementsietsidis, A., Srinivas, K., & Ward, M. J.

(2012). Instance-based matching of large ontologies using locality-sensitive hashing. In The

Semantic Web–ISWC 2012 (pp. 49-64). Springer Berlin Heidelberg.

Elfeky, M. G., Verykios, V. S., & Elmagarmid, A. K. (2002). TAILOR: A record linkage

toolbox. In Data Engineering, 2002. Proceedings. 18th International Conference on (pp. 17-

28). IEEE.

Elmagarmid, A. K., Ipeirotis, P. G., & Verykios, V. S. (2007). Duplicate record detection: A

survey. Knowledge and Data Engineering, IEEE Transactions on, 19(1), 1-16.

Euzenat, J., & Shvaiko, P. (2007). Ontology matching (Vol. 333). Heidelberg: Springer.

Fellegi, I. P., & Sunter, A. B. (1969). A theory for record linkage. Journal of the American

Statistical Association, 64(328), 1183-1210.

171

Ferrara, A., Lorusso, D., Montanelli, S., & Varese, G. (2008, October). Towards a benchmark

for instance matching. In The 7th International Semantic Web Conference (p. 37).

Ferrara, A., Montanelli, S., Noessner, J., & Stuckenschmidt, H. (2011). Benchmarking

matching applications on the semantic web. In The Semantic Web: Research and Applications

(pp. 108-122). Springer Berlin Heidelberg.

Ferrara, A., Nikolov, A., Noessner, J., & Scharffe, F. (2013). Evaluation of instance matching

tools: The experience of OAEI. Web semantics: Science, services and agents on the World Wide

Web, 21, 49-60.

Ferrara, A., Nikolov, A., & Scharffe, F. (2013). Data linking for the semantic web. Semantic

Web: Ontology and Knowledge Base Enabled Tools, Services, and Applications, 169.

Getoor, L., & Machanavajjhala, A. (2013, August). Entity resolution for big data.

In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery

and data mining (pp. 1527-1527). ACM.

Gropp, W., Lusk, E., Doss, N., & Skjellum, A. (1996). A high-performance, portable

implementation of the MPI message passing interface standard.Parallel computing, 22(6), 789-

828.

Gusfield, D., & Irving, R. W. (1989). The stable marriage problem: structure and algorithms.

MIT press.

Halevy, A., Rajaraman, A., & Ordille, J. (2006, September). Data integration: the teenage years.

In Proceedings of the 32nd international conference on Very large data bases (pp. 9-16). VLDB

Endowment.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The

WEKA data mining software: an update. ACM SIGKDD explorations newsletter, 11(1), 10-18.

Han, S. N., Lee, G. M., & Crespi, N. (2014). Semantic context-aware service composition for

building automation system. Industrial Informatics, IEEE Transactions on, 10(1), 752-761.

Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver

operating characteristic (ROC) curve. Radiology, 143(1), 29-36.

Hernández, M. A., & Stolfo, S. J. (1995, June). The merge/purge problem for large databases.

In ACM SIGMOD Record (Vol. 24, No. 2, pp. 127-138). ACM.

Hernández, M. A., & Stolfo, S. J. (1998). Real-world data is dirty: Data cleansing and the

merge/purge problem. Data mining and knowledge discovery, 2(1), 9-37.

172

Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets.

Neural computation, 18(7), 1527-1554.

Hsu, C. W., Chang, C. C., & Lin, C. J. (2003). A practical guide to support vector classification.

Hu, W., Qu, Y. Z., & Sun, X. Z. (2011). Bootstrapping object coreferencing on the semantic

web. Journal of Computer Science and Technology, 26(4), 663-675.

Isele, R., Jentzsch, A., & Bizer, C. (2011, June). Efficient Multidimensional Blocking for Link

Discovery without losing Recall. In WebDB.

Jaffri, A., Glaser, H., & Millard, I. (2008). Uri disambiguation in the context of linked data.

Jean-Mary, Y. R., Shironoshita, E. P., & Kabuka, M. R. (2010). Asmov: Results for oaei

2010. Ontology Matching, 126.

Jeffery, S. R., Franklin, M. J., & Halevy, A. Y. (2008, June). Pay-as-you-go user feedback for

dataspace systems. In Proceedings of the 2008 ACM SIGMOD international conference on

Management of data (pp. 847-860). ACM.

Jiménez-Ruiz, E., & Grau, B. C. (2011). Logmap: Logic-based and scalable ontology matching.

In The Semantic Web–ISWC 2011 (pp. 273-288). Springer Berlin Heidelberg.

Joachims, T. (1999). Making large scale SVM learning practical. Universität Dortmund.

Kejriwal, M., & Miranker, D. P. (2013, December). An unsupervised algorithm for learning

blocking schemes. In Data Mining (ICDM), 2013 IEEE 13th International Conference on (pp.

340-349). IEEE.

Kejriwal, M., & Miranker, D. P. (2014). A two-step blocking scheme learner for scalable link

discovery. Ontology Matching, 49.

Kejriwal, M., & Miranker, D. P. (2015). A DNF Blocking Scheme Learner for Heterogeneous

Datasets. arXiv preprint arXiv:1501.01694.

Kejriwal, M., & Miranker, D. P. (2015). Semi-supervised Instance Matching Using Boosted

Classifiers. In The Semantic Web. Latest Advances and New Domains (pp. 388-402). Springer

International Publishing.

Kejriwal, M., & Miranker, D. P. (2015). An Unsupervised Instance Matcher for Schema-free

RDF Data. Web Semantics: Science, Services and Agents on the World Wide Web.

Kejriwal, M., & Miranker, D. P (2015). Sorted Neighborhood for Schema-free RDF Data.

173

Kim, H. S., & Lee, D. (2010, March). HARRA: fast iterative hashed record linkage for large-

scale data collections. In Proceedings of the 13th International Conference on Extending

Database Technology (pp. 525-536). ACM.

Kirsten, T., Kolb, L., Hartung, M., Groß, A., Köpcke, H., & Rahm, E. (2010). Data partitioning

for parallel entity matching. arXiv preprint arXiv:1006.5309.

Klyne, G., & Carroll, J. J. (2006). Resource description framework (RDF): Concepts and

abstract syntax.

Kolb, L., Thor, A., & Rahm, E. (2012). Multi-pass sorted neighborhood blocking with

MapReduce. Computer Science-Research and Development, 27(1), 45-63.

Kolb, L., Thor, A., & Rahm, E. (2012). Dedoop: efficient deduplication with

Hadoop. Proceedings of the VLDB Endowment, 5(12), 1878-1881.

Köpcke, H., Thor, A., & Rahm, E. (2010). Evaluation of entity resolution approaches on real-

world match problems. Proceedings of the VLDB Endowment, 3(1-2), 484-493.

Köpcke, H., & Rahm, E. (2010). Frameworks for entity matching: A comparison. Data &

Knowledge Engineering, 69(2), 197-210.

Lenzerini, M. (2002, June). Data integration: A theoretical perspective. In Proceedings of the

twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database

systems (pp. 233-246). ACM.

Leonardi, E., Abel, F., Heckmann, D., Herder, E., Hidders, J., & Houben, G. J. (2010). A

flexible rule-based method for interlinking, integrating, and enriching user data (pp. 322-336).

Springer Berlin Heidelberg.

Li, J., Tang, J., Li, Y., & Luo, Q. (2009). Rimom: A dynamic multistrategy ontology alignment

framework. Knowledge and Data Engineering, IEEE Transactions on, 21(8), 1218-1232.

Ma, Y. (2014, June). Effective Instance Matching for Heterogeneous Structured Data.

Ma, Y., Tran, T., & Bicer, V. (2013, April). Typifier: Inferring the type semantics of structured

data. In Data Engineering (ICDE), 2013 IEEE 29th International Conference on (pp. 206-217).

IEEE.

Ma, K., & Yang, B. (2015, September). Parallel NoSQL Entity Resolution Approach with

Mapreduce. In Intelligent Networking and Collaborative Systems (INCOS), 2015 International

Conference on (pp. 384-389). IEEE.

McCallum, A., Nigam, K., & Ungar, L. H. (2000, August). Efficient clustering of high-

dimensional data sets with application to reference matching. In Proceedings of the sixth ACM

174

SIGKDD international conference on Knowledge discovery and data mining (pp. 169-178).

ACM.

McCarthy, J. F., & Lehnert, W. G. (1995). Using decision trees for coreference resolution.

arXiv preprint cmp-lg/9505043.

McGuinness, D. L., & Van Harmelen, F. (2004). OWL web ontology language overview. W3C

recommendation, 10(10), 2004.

Menestrina, D., Whang, S. E., & Garcia-Molina, H. (2010). Evaluating entity resolution

results. Proceedings of the VLDB Endowment, 3(1-2), 208-219.

Moro, A., Raganato, A., & Navigli, R. (2014). Entity linking meets word sense disambiguation:

a unified approach. Transactions of the Association for Computational Linguistics, 2, 231-244.

Mesnil, G., Dauphin, Y., Glorot, X., Rifai, S., Bengio, Y., Goodfellow, I. J., ... & Vincent, P.

(2012). Unsupervised and Transfer Learning Challenge: a Deep Learning Approach. ICML

Unsupervised and Transfer Learning, 27, 97-110.

Metwally, A., & Faloutsos, C. (2012). V-smart-join: A scalable mapreduce framework for all-

pair similarity joins of multisets and vectors. Proceedings of the VLDB Endowment, 5(8), 704-

715.

Michelson, M., & Knoblock, C. A. (2006, July). Learning blocking schemes for record linkage.

In Proceedings of the National Conference on Artificial Intelligence (Vol. 21, No. 1, p. 440).

Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999.

Munkres, J. (1957). Algorithms for the assignment and transportation problems. Journal of the

Society for Industrial and Applied Mathematics,5(1), 32-38.

Newcombe, H. B., Kennedy, J. M., Axford, S. J., & James, A. P. (1959). Automatic Linkage of

Vital Records Computers can be used to extract" follow-up" statistics of families from files of

routine records. Science, 130(3381), 954-959.

Ngomo, A. C. N. (2011). A time-efficient hybrid approach to link discovery. Ontology

Matching, 1.

Ngomo, A. C. N., & Auer, S. (2011). Limes-a time-efficient approach for large-scale link

discovery on the web of data. integration, 15, 3.

Ngomo, A. C. N., Lehmann, J., Auer, S., & Höffner, K. (2011, October). Raven–active learning

of link specifications. In Proceedings of the Sixth International Workshop on Ontology

Matching (pp. 25-37).

175

Ngomo, A. C. N., & Lyko, K. (2012). Eagle: Efficient active learning of link specifications

using genetic programming. In The Semantic Web: Research and Applications (pp. 149-163).

Springer Berlin Heidelberg.

Ngomo, A. C. N., & Lyko, K. (2013, October). Unsupervised learning of link specifications:

deterministic vs. non-deterministic. In OM (pp. 25-36).

Ngomo, A. C. N., Lyko, K., & Christen, V. (2013). Coala–correlation-aware active learning of

link specifications. In The Semantic Web: Semantics and Big Data (pp. 442-456). Springer

Berlin Heidelberg.

Nikolov, A., Uren, V., Motta, E., & De Roeck, A. (2008). Integration of semantically annotated

data by the KnoFuss architecture. In Knowledge Engineering: Practice and Patterns (pp. 265-

274). Springer Berlin Heidelberg.

Nikolov, A., Uren, V., Motta, E., & De Roeck, A. (2009). Towards Data Fusion in a multi-

ontology Environment.

Niu, X., Rong, S., Wang, H., & Yu, Y. (2012, October). An effective rule miner for instance

matching in a web of data. In Proceedings of the 21st ACM international conference on

Information and knowledge management (pp. 1085-1094). ACM.

Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. Knowledge and Data Engineering,

IEEE Transactions on, 22(10), 1345-1359.

Papadakis, G., Demartini, G., Fankhauser, P., & Kärger, P. (2010, November). The missing

links: Discovering hidden same-as links among a billion of triples. In Proceedings of the 12th

International Conference on Information Integration and Web-based Applications & Services

(pp. 453-460). ACM.

Papadakis, G., Ioannou, E., Palpanas, T., Niederée, C., & Nejdl, W. (2013). A blocking

framework for entity resolution in highly heterogeneous information spaces. Knowledge and

Data Engineering, IEEE Transactions on, 25(12), 2665-2682.

Peleg, D. (2007). Approximation algorithms for the label-cover max and red-blue set cover

problems. Journal of Discrete Algorithms, 5(1), 55-64.

Puhlmann, S., Weis, M., & Naumann, F. (2006). XML duplicate detection using sorted

neighborhoods. In Advances in Database Technology-EDBT 2006 (pp. 773-791). Springer

Berlin Heidelberg.

Pujara, J., Miao, H., Getoor, L., & Cohen, W. (2013). Knowledge graph identification. In The

Semantic Web–ISWC 2013 (pp. 542-557). Springer Berlin Heidelberg.

176

Quilitz, B., & Leser, U. (2008). Querying distributed RDF data sources with SPARQL (pp. 524-

538). Springer Berlin Heidelberg.

Rahm, E., & Bernstein, P. A. (2001). A survey of approaches to automatic schema

matching. the VLDB Journal, 10(4), 334-350.

Raimond, Y., Sutton, C., & Sandler, M. B. (2008). Automatic Interlinking of Music Datasets

on the Semantic Web. LDOW, 369.

Ravikumar, P., & Cohen, W. W. (2004, July). A hierarchical graphical model for record

linkage. In Proceedings of the 20th conference on Uncertainty in artificial intelligence (pp.

454-461). AUAI Press.

Raz, R., & Safra, S. (1997, May). A sub-constant error-probability low-degree test, and a sub-

constant error-probability PCP characterization of NP. In Proceedings of the twenty-ninth

annual ACM symposium on Theory of computing (pp. 475-484). ACM.

Rong, S., Niu, X., Xiang, E. W., Wang, H., Yang, Q., & Yu, Y. (2012). A machine learning

approach for instance matching based on similarity metrics. In The Semantic Web–ISWC

2012 (pp. 460-475). Springer Berlin Heidelberg.

Sadosky, P., Shrivastava, A., Price, M., & Steorts, R. C. (2015). Blocking Methods Applied to

Casualty Records from the Syrian Conflict. arXiv preprint arXiv:1510.07714.

Salton, G., & McGill, M. J. (1986). Introduction to modern information retrieval.

Sahoo, S. S., Halb, W., Hellmann, S., Idehen, K., Thibodeau Jr, T., Auer, S., ... & Ezzat, A.

(2009). A survey of current approaches for mapping of relational databases to RDF. W3C

RDB2RDF Incubator Group Report, 113-130.

Scharffe, F., Liu, Y., & Zhou, C. (2009). Rdf-ai: an architecture for rdf datasets matching,

fusion and interlink. In Proc. IJCAI 2009 workshop on Identity, reference, and knowledge

representation (IR-KR), Pasadena (CA US).

Schmachtenberg, M., Bizer, C., & Paulheim, H. (2014). Adoption of the linked data best

practices in different topical domains. In The Semantic Web–ISWC 2014 (pp. 245-260).

Springer International Publishing.

Schroeder, B., & Gibson, G. (2010). A large-scale study of failures in high-performance

computing systems. Dependable and Secure Computing, IEEE Transactions on, 7(4), 337-350.

Sequeda, J. F., & Miranker, D. P. (2013). Ultrawrap: SPARQL execution on relational

data. Web Semantics: Science, Services and Agents on the World Wide Web, 22, 19-39.

177

Settles, B. (2010). Active learning literature survey. University of Wisconsin, Madison, 52(55-

66), 11.

Shadbolt, N., O'Hara, K., Berners-Lee, T., Gibbins, N., Glaser, H., & Hall, W. (2012). Linked

open government data: Lessons from data. gov. uk. IEEE Intelligent Systems, 27(3), 16-24.

Song, D., & Heflin, J. (2011). Automatically generating data linkages using a domain-

independent candidate selection approach. In The Semantic Web–ISWC 2011 (pp. 649-664).

Springer Berlin Heidelberg.

Soru, T., & Ngomo, A. C. N. (2014, September). A comparison of supervised learning

classifiers for link discovery. In Proceedings of the 10th International Conference on Semantic

Systems (pp. 41-44). ACM.

Stephenson, C. (1980). The methodology of historical census record linkage: a users guide to

the Soundex. Journal of Family History, 5(1), 112-115.

Stoilos, G., Simou, N., Stamou, G., & Kollias, S. (2006). Uncertainty and the semantic web.

Intelligent Systems, IEEE, 21(5), 84-87.

Suchanek, F. M., Abiteboul, S., & Senellart, P. (2011). Paris: Probabilistic alignment of

relations, instances, and schema. Proceedings of the VLDB Endowment, 5(3), 157-168.

Tian, A., Kejriwal, M., & Miranker, D. P. (2014, June). Schema matching over relations,

attributes, and data values. In Proceedings of the 26th International Conference on Scientific

and Statistical Database Management(p. 28). ACM.

Vernica, R., Carey, M. J., & Li, C. (2010, June). Efficient parallel set-similarity joins using

MapReduce. In Proceedings of the 2010 ACM SIGMOD International Conference on

Management of data (pp. 495-506). ACM.

Volz, J., Bizer, C., Gaedke, M., & Kobilarov, G. (2009). Silk-A Link Discovery Framework for

the Web of Data. LDOW, 538.

Whang, S. E., Menestrina, D., Koutrika, G., Theobald, M., & Garcia-Molina, H. (2009, June).

Entity resolution with iterative blocking. In Proceedings of the 2009 ACM SIGMOD

International Conference on Management of data(pp. 219-232). ACM.

White, T. (2012). Hadoop: The definitive guide. " O'Reilly Media, Inc.".

Winkler, W. E. (1993). Improved decision rules in the Fellegi-Sunter model of record linkage.

Winkler, W. E. (1999). The state of record linkage and current research problems. In Statistical

Research Division, US Census Bureau.

178

Winkler, W. E. (2002). Methods for record linkage and bayesian networks. Technical report,

Statistical Research Division, US Census Bureau, Washington, DC.

Yan, S., Lee, D., Kan, M. Y., & Giles, L. C. (2007, June). Adaptive sorted neighborhood

methods for efficient record linkage. In Proceedings of the 7th ACM/IEEE-CS joint conference

on Digital libraries (pp. 185-194). ACM.

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., & Stoica, I. (2010, June). Spark:

cluster computing with working sets. In Proceedings of the 2nd USENIX conference on Hot

topics in cloud computing (Vol. 10, p. 10).

Zhai, C., & Lafferty, J. (2001, September). A study of smoothing methods for language models

applied to ad hoc information retrieval. In Proceedings of the 24th annual international ACM

SIGIR conference on Research and development in information retrieval (pp. 334-342). ACM.

Zhu, X., & Goldberg, A. B. (2009). Introduction to semi-supervised learning.Synthesis lectures

on artificial intelligence and machine learning, 3(1), 1-130.

